
Module Reference

James Gardner

April 10, 2005

http://www.pythonweb.org

docs at pythonweb.org

Copyright c© 2001, 2002, 2003, 2004, 2005 James Gardner. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

This manual provides a detailed reference of each of the modules which make up the Python Web Modules.

For an overview of the modules, their purpose and licence seeOverview of the Python Web Modules

Warning: This version of the modules has undergone many changes and should be considered a development release,
likely to contain some bugs.

CONTENTS

1 Web Modules 1
1.1 web — Web modules . 1
1.2 web.auth — Easy to use authorisation, authentication and user management system. 2
1.3 datetime — Compatibility code providing date and time classes for Python 2.2 users. 19
1.4 web.database — SQL database layer. 22
1.5 web.database.object — An object relation mapper built on theweb.database and

web.form modules. 73
1.6 web.error — Enhanced error handling based on thecgitb module 99
1.7 web.environment — Tools for seting up an environment. 107
1.8 web.form — Construction of persistant forms/wizards for HTML interfaces. 109
1.9 web.image — Create and manipulate graphics including JPG, PNG, PDF, PS usingPIL 120
1.10 web.mail — Simple function to send email usingemail . 122
1.11 web.session — Persistent storage of sessions and automatic cookie handling. 124
1.12 web.template — For the easy display of data as HTML/XML. 136
1.13 web.util — Useful utility functions that don’t fit elsewhere. 141
1.14 web.wsgi — Web Server Gateway Interface tools. 145

A Reporting Bugs 167

B History and License 169
B.1 History of the software. 169

Module Index 171

Index 173

i

ii

CHAPTER

ONE

Web Modules

The Web Modules are a series of useful librares for building web applications without the need to learn a framework.

1.1 web — Web modules

Theweb module provides some basic utility functions and objects which are used throughout the Web Modules.

Version Information

Theweb module has the following variables:

web.version info A tuple similar to sys.version info in the form (major version, minor
version, revision, release candidate, status)

web.version The version as a string eg’0.4.0rc1’

web.name The name of the modules as a string

web.date The date of the release as a string in the format’yyyy-mm-dd’ .

web.status The release status of the code. For example’beta’

Useful Objects

Theweb module provides the following objects:

web.cgi An object based on the cgi.FieldStorage() object.

Theweb.cgi object is used to access CGI environment variables such as information submitted from forms
or appended to a URL or information about the user’s browser.web.cgi provides a dictionary-like interface
to all the sumbitted CGI variables.

Warning: Creating acgi.FieldStorage object can destroy data that would be used in subsequent creating
subsequentcgi.FieldStorage objects so you should only use theweb.cgi object which will be created
first in order to avoid this problem.

See Also:

cgi Module Documentation
(http://www.python.org/doc/current/lib/module-cgi.html)

The cgi module documentation distributed with Python has more information about
cgi.FieldStorage objects and a full functional specification.

Useful Functions

1

header ([type=’text/html’])
Returns a Content-type HTTP header

typeThe content-type to output

encode (html[, mode=’url’])
Encode a string for use in an HTML document

htmlThe string to encode

modeIf modeis ’url’ thehtmlstring is encoded for use in a URL. Ifmodeis ’form’ html is encoded for use
in a form field.

Warning: The HTTP protocol doesn’t specify the maximum length of URLs but to be absolutely safe try
not to let them be longer than 256 characters. Internet Explorer supports URLs of up to 2,083 characters.
Any long strings are better off encoded to be put as hidden values in a form withmethod="POST" rather
than encoded and embedded in URLs. Information sent usingPOSTis sent in the HTTP header where
there is no limit to the length.

Another reason not to encode larege amounts if information in URLs is that doing so may also result in
strange behaviour in certain browsers.

1.2 web.auth — Easy to use authorisation, authentication and user
management system

The web.auth module provides methods for allowing multiple users in different groups, multiple access levels to
multiple applications with multiple roles and activity status using a single login. It offers a poweful, flexible and
simple way to restrict or manage access to different parts of your code and is suitable for enterprise use.

1.2.1 Background Information

An auth system has to perform two main tasks:

Authentication Finding out if the user is who he claims to be

Authorisation Checking the authenticated user has sufficient access priviledges to perform the task

In order to authenticate a user a username and password is usually entered and if the password matches the username
the user is authenticated. This process involves several steps:

• Displaying a sign in form

• Checking the username and password

• Displaying the form again if the details are not correct

• Storing the information that the user is signed in

Before this can happen a mechanism is required to be able to add users to the system and set their access priveledges
and a mechainsm is required to store information about the signed in user so that they remain signed in.

Theweb.auth module provides the following classes to achieve all these tasks in a simple and yet flexible way.

2 Chapter 1. Web Modules

admin objects (AuthAdmin class) This class is used to administer the auth environment, add users, set access levels
etc.

session objects (AuthSession class) This class is used to store information about who is signed in, when they
signed in and when thry should be signed out

manager objects (AuthManager class) Used to manage the auth functions, has all the functionality of the admin
and session objects

user objects (AuthUser class) Contain all the information about a particular user and can be used to set simple user
properties

handler objects Are used to automatically handle tasks such as user sign in

1.2.2 Creating a basic auth environment

The web.auth module is designed so that the data can be stored in ways using different drivers. Currently only
a database storage driver exists allowing auth information to be stored in any relational database supported by the
web.database module. Theweb.database module includes SnakeSQL, a pure Python database which works
like a library, so you can use theweb.auth module even if you do not have access to another relational database
engine.

In this example we are using a database to store the auth and session information so we setup a database cursor named
cursor as described in the documentation for theweb.database module.

import web.database
connection = web.database.connect(adapter=’snakesql’, database=’test’, autoCreate=1)
cursor = connection.cursor()

Next we need to create the necessary tables which will store information about the users and their access rights. To do
this we need an admin object:

admin = web.auth.admin(driver=’database’, cursor=cursor)

If we haven’t already created the auth tables we can do so like this:

if not admin.completeAuthEnvironment():
admin.removeAuthEnvironment(ignoreErrors=True)
admin.createAuthEnvironment()

connection.commit()

If any of the tables are missing, this code removes all existing tables thereby destroying all the data they contain
(ignoring errors produced because of missing tables) and re-creates all the tables. Theconnection.commit()
saves the changes to the database.

Adding Applications

To add an application to the auth environment you use theaddApplication() method of the admin object created
above. To add an application namedapp we would use the following:

1.2. web.auth — Easy to use authorisation, authentication and user management system 3

admin.addApp(’app’)

Likewise you can check if applications exist usingadmin.appExists(app) and remove applications using
admin.removeApp(app) . You can get a list of applications usingadmin.apps()

Adding Users

To add a user you use theadmin.addUser() method of the admin object.

The addUser() method takes the parametersusername, password, firstname, surname, email, activeandgroup.
Only usernameandpasswordare required.

Using the admin object created in the example above:

admin.addUser(username=’john’, password=’bananas’)

There are a also number of methods to manipulate details of users described later.

Access Levels and Roles

Theweb.auth module has two methods of setting access priviledges, the first is by setting an access level which is
simply a positive integer. The higher the number the greater the access level. An access level of0 or None means no
access. You can then check that the signed in user has an access level which is high enough to grant them access to a
particular piece of functionality.

The second method is using roles; these are best described using an example. In a content management system
users may be allowed to add, edit and remove pages so you might create the rolesadd , edit and remove . An
administrator might have all three roles and an editor might only be specified the roleedit . You can then grant users
access to different parts of your application based on their role.

For the timebeing we will describe how to use access levels since they are simpler.

You can set the access level for a particular user or applicaiton using theadmin.setLevel() method of the admin
object. Each user can have a different access level to each application so you must specify the username, app name
and level to set an access level.

admin.setLevel(username=’john’, app=’app’, level=1)

The easy way

If you just want to get up and running quicklyweb.auth.admin() takes a parameterautoCreate. If you spec-
ify autoCreate=1all the steps performed so far with the exception of committing the database will be performed
automatically and you will have the userjohn already set up ready to test the system.

admin = web.auth.admin(driver=’database’, cursor=cursor, autoCreate=1)
connection.commit()

4 Chapter 1. Web Modules

1.2.3 Authentication and Authorisation

Once the auth environment is set up and the appropriate users and access priveledges have been set up you will want
to authorise and authenticate users.

In order to authenticate a user the user needs to be able to sign in with their username and password. In order to remain
signed in the user information needs to be stored somewhere so that the user isn’t immediately signed out agian on the
next HTTP request.

Theweb.auth module uses aweb.session module session store to store the auth session information about the
current signed in user. This means you need to setup aweb.seesion store as shown below. See theweb.session
module for full details. The session store for the auth session information is normally calledauth but you can use
whichever session store you prefer. You should be sure that the variables set in the store are not going to be accidently
over-written by other applications by choosing a sotre name that other applications do not have access to.

import web.session
session = web.session.manager(driver=’database’, cursor=cursor, autoCreate=1)
if not session.load():

session.create()
store = session.store(’auth’)

In order to authenticate users you will need to use a manager object. This has all the functionality of the admin object
already described but also has session functionality.

import web.auth
auth = web.auth.manager(

store=store,
driver=’database’,
expire=100,
idle=20,
autoCreate=1,
cursor=cursor

)

The manager object takes the parametersstore, idle andexpire in addition to all the parameters of the admin object.
storeis the session store to use for the auth session,expireis the maximum length of time a user can be signed in for.
If expireis 0 it means the user can be signed in indefinately (although practically the session from theweb.session
itself will not last forever).idle is the maximum length of time a user can be signed in for without visiting the site.
Again a value of0 means there is no limit.

Checking Who Is Signed In

If the manager finds that a user is currently signed in and that the auth session has not idled or expired, then the
attributeauth.signedInUser will contain a user object containing all the auth information about that user. This
is set toNone if no user is signed in.

Usernames are case insensitive but are always stored in the driver as lowercase.

You can directly set the firstname, surname, email, group and active status of the user like this
auth.signedInUser.firstname = ’John’

If no user is signed in you will need to present a sign in form to allow the user to sign in.

1.2. web.auth — Easy to use authorisation, authentication and user management system 5

if auth.signedInUser != None:
print web.header(’text/plain’), "Authorised"

else:
print web.header()
display sign in form

You can use whatever methods you like to sign a user in, just useauth.signIn(username) once you have
checked the user’s password and want to sign them in. They will be added to the auth session store.

If you don’t want to provide the sign in functionality yourself you can use a sign in handler.

The Sign In Handler

The sign in handler performs all the checks necessary and returns a dictionary of variables to display to the user if the
sign in was unsuccessful. You can us it like this:

import web.auth.handler.signIn
print web.header()
signInHandler = web.auth.handler.signIn.SignInHandler(manager=auth)
form = signInHandler.handle()
if form: # form needs displaying

print ’<html><body><h1>Please Sign In</h1>%(form)s<p>%(message)s</p></body></html>’%form
else:

We have just signed in, but we have not authorised the user
pass

Even though the user is authenticated and signed in, we have not yet authorised them.

Authenticating the Signed In User

Once we have checked a user is signed in usingauth.signedInUser != None we can authorise the user. The
.signedInUser attribute of the manager object will contain a user object for the signed in user. The user object
has anauthorise() method which can be used to check the user’s access priveledges. The method returnsFalse
if the user does not meet all the authorisation criteria andTrue otherwise.

if auth.signedInUser.authorise(app=’app’, level=1):
print "Signed in successfully and authorised"

else:
print "Not authorised to use this application"

Theauthorise() method takes a number of parameters for more advanced authorisation functionality.

1.2.4 Simple Example

Putting together everything in the previous sections gives us this full (but not very useful) application:

#!/usr/bin/env python

"""Auth Example. Username=john and Password=bananas (Case sensitive)"""

6 Chapter 1. Web Modules

show python where the modules are and enable error displays
import sys; sys.path.append(’../’); sys.path.append(’../../../’)
import web.error; web.error.enable()
import web, web.database

Setup a database connection
connection = web.database.connect(

adapter="snakesql",
database="webserver-auth",
autoCreate=1

)
cursor = connection.cursor()

Obtain a session manager
import web.session
session = web.session.manager(

driver=’database’,
autoCreate=1,
cursor=cursor

)
if not session.load():

session.create()

Obtain Auth objects
import web.auth
auth = web.auth.manager(

session.store(’auth’),
’database’,
idle=20,
autoCreate=1,
encryption=’md5’,
cursor=cursor

)

Authentication and Authorisation code
if auth.signedInUser != None and auth.signedInUser.authorise(app=’app’, level=1):

print web.header(’text/plain’), "Authorised"
else:

print web.header()
Sign in however you like.. but you could use this signIn handler
import web.auth.handler.signIn
signInHandler = web.auth.handler.signIn.SignInHandler(

manager=auth,
encryption=’md5’

)
form = signInHandler.handle()
if form: # ie there is a problem and the sign in form needs displaying

print """<html><body><h1>Please Sign In</h1>
%(form)s<p>%(message)s</p></body></html>"""%form

else:
We have just signed in, but we have not authorised the user
if auth.signedInUser.authorise(app=’app’, level=1):

print "Signed in successfully"
else:

print "Not authorised to use this application"

connection.commit()
connection.close()

1.2. web.auth — Easy to use authorisation, authentication and user management system 7

You can test this example by starting the test webserver in ‘scripts/webserver.py’ and visiting
http://localhost:8080/doc/src/lib/webserver-web-auth.py on your local machine. The username isjohn and the
password isbananas .

1.2.5 Advanced Authorisation Options

As well as access levels,web.auth also supports role based authorisation, groups of users, and disabling user
accounts by setting theactive property.

Using Roles

Role based authorisation is the reccommended way of using theweb.auth module as it is more powerful and flexible
than using access levels. Of course, you can if you wish combine access levels and roles by specifying both.

Before you can grant a user a particular role you must first add the role to the auth database using an admin or manager
object as described earlier.

admin.addRole(’add’)
admin.addRole(’edit’)

Each user is granted different roles to different applications. If you have applications namedcms andnews then a
particular user might be granted the roleadd andedit to news but onlyedit to cms.

admin.setRole(username=’james’, app=’news’, role=’add’)
admin.setRole(username=’james’, app=’news’, role=’edit’)
admin.setRole(username=’james’, app=’cms’, role=’edit’)

The user can then be authorised based on their roles:

>>> user = admin.user(’james’)
>>> user.authorise(app=’cms’, role=’add’)
0
>>> user.authorise(app=’cms’, role=’edit’)
1
>>> user.authorise(app=’news’, role=’add’)
1
>>> user.authorise(app=’news’, role=’edit’)
1

To obtain a user’s roles you can do one of the following:

>>> user = admin.user(’james’)
>>> user.roles
{’cms’:[’edit’], ’news’:[’add’,’edit’]}
>>> admin.roles(username=’james’, app=’cms’)
’edit’

There are also methods forroleExists() , removeRole andunsetRole() .

8 Chapter 1. Web Modules

Using Groups

It is sometimes useful to consider groups of users, perhaps if people from different companies use your application but
you want to keep their users separate. This can be achieved with groups.

Before you can use a group, it must be added to the database:

admin.addGroup(’butcher’)
admin.addGroup(’fishmonger’)

The when adding users you can specify the group:

admin.addUser(username=’james’, password=’password’, group=’butcher’)
admin.addUser(username=’sally’, password=’password’, group=’butcher’)
admin.addUser(username=’anne’, password=’password’, group=’fishmonger’)

Alternatively you can specify or change the group of an already created user:

user = admin.user(’james’)
user.group = ’fishmonger’

You can obtain a list of groups using thegroups() method:

>>> admin.groups()
(’butcher’, ’fishmonger’)

You can then authorise a user based on their group.

>>> admin.user(’anne’).authorise(group=’fishmonger’)
1
>>> user = admin.user(’james’)
>>> user.authorise(group=’butcher’)
0
>>> user.authorise(group=’fishmonger’)
1

There are also methodsgroupExists() andremoveGroups() .

Disabling Accounts using active

Occasionally it is useful to disable a user, say for example if they haven’t renewed their subscription. You don’t want
to completely remove their accound since you would have to add all the information if they paid the fee, you just want
to disable the account.

This can be achieved by setting a user’s active property. Here are some ways of setting the active property:

admin.addUser(username=’vicki’, group=’butcher’, password=’password’, active=0)
admin.user(’james’).active = 0

The default value of theactiveparameter of theauthorise() method if 1 so once active is set to 0, the user will
not be authorised unlessactiveis specified as 0 to mean only authorise disabled accounts otNone to mean authorise

1.2. web.auth — Easy to use authorisation, authentication and user management system 9

all accounts.

>>> admin.user(’james’).authorise()
0
>>> admin.user(’james’).authorise(active=0)
1

Example

Putting together everything in the previous sections gives us this full authorisation example:

#!/usr/bin/env python

show python where the modules are
import sys; sys.path.append(’../’); sys.path.append(’../../../’)
import web, web.database

Setup a database connection
connection = web.database.connect(

adapter="snakesql",
database="command-auth"

)
cursor = connection.cursor()

Obtain Auth objects
import web.auth
from web.errors import AuthError
admin = web.auth.admin(’database’, cursor=cursor)

Setup the environment (destroying the existing environment)
admin.removeAuthEnvironment(ignoreErrors=True)
admin.createAuthEnvironment()

Setup the users and their access rights
admin.addApp(’cms’)
admin.addApp(’news’)

admin.addGroup(’butcher’)
admin.addGroup(’fishmonger’)

admin.addRole(’add’)
admin.addRole(’edit’)

admin.addUser(username=’james’, group=’butcher’, password=’password’)
admin.addUser(username=’sally’, group=’butcher’, password=’password’)
admin.addUser(username=’vicki’, group=’butcher’, password=’password’, active=0)

admin.addUser(username=’anne’, group=’fishmonger’, password=’password’)
admin.addUser(

username=’john’,
group=’fishmonger’,
password=’password’,
firstname=’John’,
surname=’Smith’,
email=’john@example.com’

)

10 Chapter 1. Web Modules

admin.setLevel(’anne’, ’news’, 2)
admin.setLevel(’john’, ’news’, 1)
admin.setLevel(’anne’, ’cms’, 1)
admin.setLevel(’john’, ’cms’, 2)

admin.setRole(username=’james’, app=’cms’, role=’add’)
admin.setRole(username=’sally’, app=’cms’, role=’edit’)
admin.setRole(username=’james’, app=’news’, role=’edit’)

print ’Active Option’
print ’Sally: ’, admin.user(’sally’).authorise()
print ’Sally: ’, admin.user(’sally’).authorise(active=0)
print ’Sally: ’, admin.user(’sally’).authorise(active=None)
print ’Vicki: ’, admin.user(’vicki’).authorise()
print ’Vicki: ’, admin.user(’vicki’).authorise(active=0)
print ’Vicki: ’, admin.user(’vicki’).authorise(active=None)
print ’’
print ’Group Option’
print ’Anne: ’, admin.user(’anne’).authorise(group=’fishmonger’)
print ’James: ’, admin.user(’james’).authorise(group=’fishmonger’)
print ’’
print ’Access Levels’
print ’Anne: ’, admin.user(’anne’).authorise(app=’news’, level=2)
print ’John: ’, admin.user(’john’).authorise(app=’news’, level=2)
print ’Anne: ’, admin.user(’anne’).authorise(app=’cms’, level=2)
print ’John: ’, admin.user(’john’).authorise(app=’cms’, level=2)
print ’’
print ’Roles’
print ’James: ’, admin.user(’james’).authorise(app=’cms’, role=’add’)
print ’Sally: ’, admin.user(’sally’).authorise(app=’cms’, role=’add’)
print ’Sally: ’, admin.user(’sally’).authorise(app=’cms’, role=’edit’)
print ’James: ’, admin.user(’james’).authorise(app=’news’, role=’add’)
print ’James: ’, admin.user(’james’).authorise(app=’news’, role=’edit’)
print ’Sally: ’, admin.user(’sally’).authorise(app=’news’, role=’edit’)
print admin.roles()
print admin.roleExists(’edit’)
print admin.roleExists(’delete’)
admin.addApp(’test’)
admin.addUser(username=’test’, password=’password’)
admin.addRole(’test’)
admin.setRole(username=’test’, app=’test’, role=’test’)
admin.setLevel(’test’, ’test’, 1)
try:

admin.removeRole(’test’)
except AuthError,e:

print str(e)
else:

raise Exception(’Failed to catch remove role error’)
admin.removeRole(’test’, force=1)
print admin.roles(username=’test’)
admin.addRole(’test’)
admin.setRole(username=’test’, app=’test’, role=’test’)
admin.setRole(username=’test’, app=’cms’, role=’test’)

print admin.roles()
print admin.roles(username=’test’)
print admin.roles(username=’test’, app=’test’)
print admin.user(’test’).roles

1.2. web.auth — Easy to use authorisation, authentication and user management system 11

admin.unsetRole(’test’,’test’,’test’)
print admin.user(’test’).roles

print ’’
print ’Groups’
print admin.groups()
print admin.groupExists(’butcher’)
print admin.groupExists(’newsagents’)
admin.addGroup(’newsagents’)
admin.user(’test’).group = ’newsagents’
print admin.user(’test’).group

print admin.groups()
try:

admin.removeGroup(’newsagents’)
except AuthError,e:

print str(e)
else:

raise Exception(’Failed to catch remove group error’)
admin.removeGroup(’newsagents’, force=1)
print admin.groups()

print ’’
print ’Users’
print admin.userExists(’james’)
print admin.users()
print admin.users(group=’butcher’)
print admin.users(group=’butcher’, active=0)
print admin.users(group=’butcher’, active=1)
print admin.users(app=’cms’, role=’add’)
print admin.users(group=’butcher’, app=’cms’, role=’add’, active=0)
print admin.users(group=’butcher’, app=’cms’, role=’add’, active=1)
print admin.users(group=’fishmonger’, app=’cms’, role=’add’)
vicki = admin.user(’vicki’)
print vicki.active
vicki.active = 1
print admin.user(’vicki’).active
print vicki.firstname
vicki.firstname = ’Victoria’
print admin.user(’vicki’).firstname
print ’’
print ’Apps’
print admin.apps()
print admin.appExists(’cms’)
try:

admin.removeApp(’test’)
except AuthError,e:

print str(e)
else:

raise Exception(’Failed to catch app in use error’)
print "App removed"
print admin.roles(username=’test’)
print admin.levels(username=’test’)
admin.removeUser(’test’)
print admin.userExists(’test’)
print ’’
print ’Levels’
print admin.levels(’anne’)
admin.setLevel(’anne’, ’cms’, None)

12 Chapter 1. Web Modules

print admin.user(’anne’).levels
print
print ’Authorise’
print admin.user(’james’).authorise(group=’butcher’, app=’cms’, level=1)
print admin.user(’john’).authorise(group=’butcher’, app=’cms’, level=1)
print admin.user(’john’).authorise(group=’fishmonger’, app=’cms’, level=1)

connection.rollback()
connection.close()

Note: Since this example is very database intensive you may wish to change the first few lines to use a different
database adapter rather than SnakeSQL which runs rather slowly.

You can test this example by runningpython doc/src/lib/command-web-auth.py

The ouput produced is as follows:

1.2. web.auth — Easy to use authorisation, authentication and user management system 13

Active Option
Sally: True
Sally: False
Sally: True
Vicki: False
Vicki: True
Vicki: True

Group Option
Anne: True
James: False

Access Levels
Anne: True
John: False
Anne: False
John: True

Roles
James: True
Sally: False
Sally: True
James: False
James: True
Sally: False
(’add’, ’edit’)
True
False
The role ’test’ is still in use by the following users: test
{}
(’add’, ’edit’, ’test’)
{’test’: ’test’, ’cms’: ’test’}
(’test’,)
{’test’: ’test’, ’cms’: ’test’}
{’cms’: ’test’}

Groups
(’butcher’, ’fishmonger’)
True
False
newsagents
(’butcher’, ’fishmonger’, ’newsagents’)
The group ’newsagents’ is still in use by the following users: test
(’butcher’, ’fishmonger’)

Users
True
(’james’, ’sally’, ’vicki’, ’anne’, ’john’, ’test’)
(’james’, ’sally’, ’vicki’)
(’vicki’,)
(’james’, ’sally’)
(’james’,)
()
(’james’,)
()
0
1

Victoria

Apps
(’cms’,)
True
The app ’test’ is still in use specifying access levels for the following users: test
App removed
{’cms’: ’test’}
{’test’: 1}
False

Levels
{’news’: 2, ’cms’: 1}
{’news’: 2}

Authorise
False
False
True

14 Chapter 1. Web Modules

1.2.6 Encryption

The password stored in the database can be encrypted for extra security. Encryption can be enabled by specifying
encryption=’md5’in the admin or manager objects.

auth = web.auth.manager(
session.store(’auth’),
’database’,
autoCreate=1,
cursor=cursor,
encryption=’md5’,

)

The encryption method must also be specified in the sign in handler so that the handler knows to encrypt the password
specified before comparing it with the encrypted version stored in the database.

signInHandler = web.auth.handler.signIn.SignInHandler(manager=auth, encryption=’md5’)

There are some drawbacks to using encryption, the main one being that the users password is not actually stored
anywhere so if a user forgets their password you must reset it rather than reading it from the database.

Also the password attribute of a user object will return the encrypted password not the real password.

>>> auth.user(’john’).password
’5f4dcc3b5aa765d61d8327deb882cf99’

Finally, if you wish to change the type of encryption you are using after having added users to the datbase you will
need to rest their passwords.

1.2.7 API Reference

AuthAdmin Object

TheAuthAdmin object is aliased asweb.auth.admin and should be used asweb.auth.admin .

classAuthAdmin (driver, [autoCreate=0], [encryption=None], [**driverParams])
Auth Manager for creating modifying and removing users and applications.

driverThe type of driver being used. Currently only’database’ is allowed

autoCreateIf set toTrue the necessary tables will be created (removing any existing tables) if any of the tables
are missing and a user namedjohn with a passwordbananas will be set up with an access level of1 to
the applicationapp . This is designed for easy testing of the module.

encryptionThe encryption method used to encrypt the password. Can beNone or ’md5’ . Warning
you cannot change the encryption method once a user is added without
resetting the password.

**driverParamsAny parameters to be specified in the formatname=valuewhich are needed by the driver spec-
ified bydriver

autoCreated
Will be True if the tables and user were autoCreated,False otherwise.

1.2. web.auth — Easy to use authorisation, authentication and user management system 15

enycryption
The encryption method used

completeAuthEnvironment ()
ReturnsTrue if the environment is correctly setup,False otherwise. In the case of the database driver
this method simply checks that all the necessary tables exist.

createAuthEnvironment ()
Creates the necessary environment. In the case of the database driver this method creates all the required
tables. If any of the tables already exist anAuthError is raised.

removeAuthEnvironment ([ignoreErrors=False])
Removes the environment. In the case of the database driver this method drops all the tables. If any of the
tables are not present anAuthError is raised unlessignoreErrorsis True

apps ()
Return a list of application names.

appExists (app)
ReturnTrue if there is an application namedapp, False otherwise.

addApp (app)
Adds an application namedapp.

removeApp (app,[force=0])
Remove the application namedapp. If force=1, the application is removed even if access levels or roles
are specified for users using the application.

user (username)
Return anAuthUser object for the user specified.

users ([group=[]], [active=None], [app=None], [role=None])
Return a list of usernames.

userExists (username)
ReturnsTrue if there is a user with the usernameusername, False otherwise.

addUser (username, password[,firstname=”][,surname=”][email=”], [active=1], [group=None])
Adds a user with the usernameusernameand passwordpasswordto the system. You can optionally also
specify the firstname, surname and email address of the user. You can choose a group for the user and
whether or not the user is active. If encryption is used the password is encrypted.

removeUser (username)
Removes the user with the usernameusername.

levels (username,[app=None])
Returns the access level of the userusernamefor the application namedapp. If app is not specified or
None, a dictionary of application name, access level pairs is returned.

setLevel (username, app, level)
Sets the access level of the userusernamefor the application namedappto level.

roles ([username=None], [app=None])
Returns the roles based on the options specified. Ifusernameandappare not specified, the available roles
are returned as a sequence. Ifusernameis specified, a dictionary of application namd role pairs are returned
for that user, ifusernameandappare both specified, the roles for the particular user and application are
returned.

roleExists (role)
ReturnsTrue if there is a role namedrole, False otherwise.

addRole (role)
Adds the new rolerole to the database. If it already exists anAuthError is raised.

removeRole (role, [force=0])
Remove the role namedrole. If force=1, the role is removed even if it is being used by any users.

16 Chapter 1. Web Modules

setRole (username, app, role)
Give the rolerole to the userusernamefor the applicationapp

setRole (username, app, role)
Remove the rolerole from the userusernamefor the applicationapp

groups ()
Returns a sequence of available group names

groupExists (group)
ReturnsTrue if there is a group namedgroup, False otherwise.None is a valid group since a user can
have no group.

addGroup (group)
Adds the new groupgroupto the database. If it already exists anAuthError is raised.

removeGroup (group,[force=0])
Remove the group namedgroup. If force=1, the group is removed even if it is being used by any users.

AuthSession Object

TheAuthSession object is aliased asweb.auth.session and should be used asweb.auth.session .

classAuthSession (store,[expire=0], [idle=0]) store
A valid web.session Store object.

expireAn integer specifying the number of seconds before the user is signed out. A value of 0 disables the expire
functionality and the user will be signed in until they sign out.Note: If the underlying session expires, the
cookie is removed or the sign in idles before the expire time specified inexpirethe user will be signed out.

idleAn integer specifying the maximum number of seconds between requests before the user is automatically
signed out. A value of 0 disables the idle functionality allowing an unlimited amount of time between user
requests.Note: If the underlying session expires, the cookie is removed or the sign in expires before the
idle time specified inidle the user will be signed out.

For managing the auth information stored in the session store.

Has the following attributes which should not be set.

store
The session store used to store the auth session information

expire
The expire time

store
The idle time

Has the following methods:

username ()
Returns the username as a string if a user is signed in, otherwise returns an empty string’’ .

signIn (username)
Sign in the user with usernameusername.

signOut ()
Sign out the signed in user.

userInfo ()
If a user is signed in, returns a dictionary with the following keys:’username’ , ’started’ ,
’accessed’ , ’expire’ , ’idle’ . If no user is signed in returnsNone.

1.2. web.auth — Easy to use authorisation, authentication and user management system 17

AuthManager Object

TheAuthManager object is aliased asweb.auth.manager and should be used asweb.auth.manager . It is
the object most frequently used for auth management.

TheAuthManager object is derived from theAuthAdmin andAuthSession objects. Conesequently it has all
the functions and methods of the admin and session objects as well as the following functionality:

classAuthManager (store, driver,[expire=0], [idle=0], [autoCreate=0], [encryption=None], [**driverParams
])

user ([username=None])

Return anAuthUser object for the user specified. If no user is specified anAuthUser object for the
currently signed in user is returned. If no user is signed in,None is returned.

AuthUser Objects

The user object is retuned byAuthAdmin andAuthManager objects’user() method and should not be created
directly.

The attributesfirstname , surname , email , password , group andactive can all be directly set and their
values will be updated in the database.

The class has the following properties:

classAuthUser username
The username of the user. Usernames are case insensitive but are always stored and returned as low-
ercase. This means that if you want to compare a username from a database with a value entered
by a user, you should first convert the value entered by a user to lowercase like this:username =
username.lower()

The username of a user cannot be changed.

password
The user’s password, 1-255 characters.

firstname
The user’s firstname, 1-255 characters. Optional

surname
The user’s surname, 1-255 characters. Optional

email
The user’s email address, max 255 characters. Optional

group
The user’s group, max 255 characters orNone if no group has been set. Optional

active
True or False depending on whether the user is considered active.

levels
The access levels for the applications the user has access to as a dictionary with application names as keys.
Levels can only be set through thesetLevel() method ofAuthManager or AuthAdmin objects.
Warning: Changing the value stored inlevels will not update the database.

roles
The user’s roles for each application as a dictionary with application names as keys. Roles can only be set
through thesetRole() method ofAuthManager or AuthAdmin objects.Warning: Changing the
value stored inroles will not update the database.

authorise ([app=None], [level=None], [role=None], [active=1], [group=[]])
ReturnTrue if the user is authorised for the options specified,False otherwise.

If active=0only disabled accounts are authorised, ifactive=Noneboth active and disabled accounts are
authorised. Ifgroup is not specified all groups are authorised, ifgroup=Noneonly users not in a group are

18 Chapter 1. Web Modules

authorised, otherwise only users in the group specified are authorised. Iflevel or role are specified,app
must be specified too.

Sign In Handler

classSignInHandler (manager,[cgi=None], [message=”], [encryption=None])
Used to automate the sign in process.

managerAn auth manager object

cgiAn alternativecgi.FieldStorage() object to be use instead of the default one.

messageThe default error message to display before a user tires to sign in.

encryptionThe encryption method being used to encrypt passwords in the database.

handle ()
If the user has been signed in returnsNone. Otherwise, returns a dictionary with two keys,’form’
containing the sign in form together with any error messages and’message’ a message explaining why
the user couldn’t be signed in.

The dictionary can then be combined with a template using%(form)s dictionary substitution to display
an HTML page to the user.

1.3 datetime — Compatibility code providing date and time classes for
Python 2.2 users

The following classes provide a subset of the functionality of the Python 2.3date , time anddatetime Objects.
If you want to do sophisticated date and time classes is it is reccommended that you use Python 2.3. These classes are
designed only so that Python 2.2 users can still use date and time functionality in theweb.database module.

Note: It should be noted that although thetime anddatetime classes have the ability to support microseconds,
the web.database module only deals in whole seconds since some of the underlying databases do not support
microseconds.

classdate (year, month, day)
A date object represents a date (year, month and day) in an idealized calendar, the current Gregorian calendar
indefinitely extended in both directions. January 1 of year 1 is called day number 1, January 2 of year 1 is called
day number 2, and so on. This matches the definition of the ”proleptic Gregorian” calendar in Dershowitz and
Reingold’s bookCalendrical Calculations, where it’s the base calendar for all computations. See the book for
algorithms for converting between proleptic Gregorian ordinals and many other calendar systems.

All arguments are required. Arguments may be ints or longs, in the following ranges:

•MINYEAR <= year <= MAXYEAR

•1 <= month <= 12

•1 <= day <= number of days in the given month and year

If an argument outside those ranges is given,ValueError is raised.

Instance Attributes:

year
BetweenMINYEARandMAXYEARinclusive.

month
Between 1 and 12 inclusive.

1.3. datetime — Compatibility code providing date and time classes for Python 2.2 users 19

day
Between 1 and the number of days in the given month of the given year.

classtime ([hour=0][,minute=0][,second=0][,microsecond=0])
A time object represents a (local) time of day, independent of any particular day.

All arguments are required. Arguments may be ints or longs, in the following ranges:

•0 <= hour < 24

•0 <= minute < 60

•0 <= second < 60

•0 <= microsecond< 1000000

If an argument outside those ranges is given,ValueError is raised.

Instance Attributes:

hour
In range(24) .

minute
In range(60) .

second
In range(60) .

microsecond
In range(1000000) .

classdatetime (year, month, day[,hour=0][,minute=0][,second=0][,microsecond=0])
A datetime object is a single object containing all the information from adate object and atime object.
Like a date object,datetime assumes the current Gregorian calendar extended in both directions; like a
time object,datetime assumes there are exactly 3600*24 seconds in every day.

All arguments are required. Arguments may be ints or longs, in the following ranges:

•MINYEAR <= year <= MAXYEAR

•1 <= month <= 12

•1 <= day <= number of days in the given month and year

•0 <= hour < 24

•0 <= minute < 60

•0 <= second < 60

•0 <= microsecond< 1000000

If an argument outside those ranges is given,ValueError is raised.

Instance Attributes:

year
BetweenMINYEARandMAXYEARinclusive.

month
Between 1 and 12 inclusive.

day
Between 1 and the number of days in the given month of the given year.

hour
In range(24) .

20 Chapter 1. Web Modules

minute
In range(60) .

second
In range(60) .

microsecond
In range(1000000) .

All classes have the following class methods:

now()
Returns adatetime.datetime object representing the current date and time

strftime (format)
Format the date using standard time module string format strings:

%a Locale’s abbreviated weekday name.
%A Locale’s full weekday name.
%b Locale’s abbreviated month name.
%B Locale’s full month name.
%c Locale’s appropriate date and time representation.
%d Day of the month as a decimal number [01,31].
%H Hour (24-hour clock) as a decimal number [00,23].
%I Hour (12-hour clock) as a decimal number [01,12].
%j Day of the year as a decimal number [001,366].
%m Month as a decimal number [01,12].
%M Minute as a decimal number [00,59].
%p Locale’s equivalent of either AM or PM.
%S Second as a decimal number [00,61]. (1)
%U Week number of the year (Sunday as the first day of the week)

as a decimal number [00,53]. All days in a new year preceding
the first Sunday are considered to be in week 0.

%w Weekday as a decimal number [0(Sunday),6].
%W Week number of the year (Monday as the first day of the week)

as a decimal number [00,53]. All days in a new year preceding
the first Monday are considered to be in week 0.

%x Locale’s appropriate date representation.
%X Locale’s appropriate time representation.
%y Year without century as a decimal number [00,99].
%Y Year with century as a decimal number.
%Z Time zone name (no characters if no time zone exists).
%% A literal "%" character.

For example:

>>> datetime.datetime(2004,5,3,10,30,50).strftime(’%x-%X’)
’05/03/04-10:30:50’

timetuple ()
Returns a basic time tuple for the date.Warning: The last 6 entries in the tuple returned from this function are
obtained fromtime.localtime() and do not represent anything.

isoformat ()
Return the date as a standard SQL string of the format.Warning: microseconds are ignored.

1.3. datetime — Compatibility code providing date and time classes for Python 2.2 users 21

>>> import web, datetime
>>> datetime.date(2004,5,3).isoformat()
’2004-05-03’
>>> datetime.time(10,30,50,9).isoformat() # Microseconds are ignored
’10:30:50’
>>> datetime.datetime(2004,5,3,10,30,50).isoformat()
’2004-05-03 10:30:50’

1.3.1 Module-Level Functionality

Thedatetime module exports the following constants:

MINYEAR The smallest year number allowed in a date or datetime object. MINYEAR is 1.

MAXYEARThe largest year number allowed in a date or datetime object. MAXYEAR is 9999.

For Example:

>>> import web # Necessary to set up the paths so datetime can be imported
>>> import datetime
>>> datetime.MINYEAR
1
>>> datetime.MAXYEAR
9999

1.3.2 Compatibility with Python 2.3 and above

The datetime module is as combitible as possible with Python 2.3. It does not implement all the features of the
Python 2.3datetime module but it implements all the ones the modules themselves need. Most of the time this is all
that is required. One important omission is that you cannot add or subtract date objects in this combatibility module.
Instead convert them to times and then convert them back again.

In order to write code compatible with both Python 2.2 and 2.3 there is one particular point to note;datetime is
not a type in Python 2.2, it is a class. This means thatdatetime.datetime.now() will not work because you
can’t call thenow() of an uninitialised class. Instead usedatetime.datetime(2004,1,1).now() . This will
produce the same (correct) result in both versions regardless of the values chosen for the date.

1.4 web.database — SQL database layer

Theweb.database module is a simple SQL abstraction layer which sits on top of a DB-API 2.0 cursor to implement
data type conversions, provide database independance and offer a more Python-like interface to the data returned from
queries. This is achieved by implementing common field types, a portable SQL dialect and a standard API for all
supported databases.

Here are the main features of the module:

• 100% compatible with the underlying DB-API 2.0 cursor. Aweb.database cursor provides access to the
underlying DB-API 2.0 cursor.

22 Chapter 1. Web Modules

• Provides methods includingselect() , insert() , update() , delete() , create() , alter() and
drop() which build and customise the SQL depending on the database being used providing database inde-
pendance.

• Provides strong typing for the data being used. No need to deal with SQL strings, the module automatically
encodes and decodes data for the approriate column.

This module has a number of different layers of increasing complexity and decreasing portability. It is important you
understand which layer you wish to use for a particular task. If for example you are only going to work with one
database you do not need to be concerned about portability and so might use thecursor object in direct mode. If
you don’t know any SQL you might choose to use theweb.database.object module to treat the database as a
Python dictionary and allow portable access.

Warning: Theweb.database module provides total database portability by converting SQL and data types to an
appropriate form for a limited subset of functions and data types of the underlying database engine. There are two
drawbacks to this approach. Firstly theweb.database layer needs to know the structure of the database. It does
this by mainting a special table which it hides. The second drawback is that if you access the database outside the
web.database module it is possible that the changes you make will not be compatible with theweb.database
module.

Having said all that, if you only access your databases through theweb.database module in protable mode (the
default) these drawbacks will not be an issue.

If you are looking for a database abstraction module to get away from using DB-API methods, and to pick up features
such as results that are returned by field name but are not so worried about the complete portability provided by
portable mode, perhaps because you only intend to use one database, you could instead use these modules in direct
mode.

See Also:

Python DB-SIG Pages
(http://www.python.org/topics/database/)

To find out more about the DB-API 2.0 or how to program using DB-API 2.0 methods, please visit
http://www.python.org/topics/database/. The rest of this documentation will assume you are not interested in
using the cursor as a DB-API 2.0 cursor and that you want to know the additional features available.

1.4.1 Background

Most database engines currently have many common features but their differences are such that Python code written
for one database engine using the DB-API 2.0 is unlikely to work with another database engine without some degree
of modification. To complicate matters further many DB-API 2.0 drivers are not actually fully DB-API 2.0 compliant.

Variation between database engines occurs in SQL syntax, choice of field types and choice of which Python object to
use to represent field values.

The DB-API 2.0 specification was designed with these differences in mind so that module implementers could make
full use of the features of their particular database engine. This module provides a simple, standardised and portable
API and SQL dialect which also exposes the interface components of the underlying DB-API 2.0 cursor. In this way
users can access a database in a simplified and portable fashion for simple operations whilst exposing the DB-API 2.0
interface for more complex operations.

The drawback of this approach is that some of the fields available in a particular database will not be available through
this module. Also there is no support for complex SQL commands including indexes or views since not all databases
support them. The approach is only to support what is available to all databases being used.

If a database-specific feature is needed for a specific call you can always use the underlying cursor object directly. By
using theweb.database module as much as possible you will still make your code more portable across databases
should you ever need to change servers and by using theweb.database module exclusively you can gain true

1.4. web.database — SQL database layer 23

database portability.

One of the major advantages of usingweb.database is that it comes with a pure Python SQL engine named
SnakeSQL which fully implements the specification (albeit slowly) so if you useweb.database in your own code
you can guarantee your users will be able to run your application even if they do not have access to a better known
database engine.

Comments and questions about this specification may be directed to James Gardner at docs at pythonweb.org.

Example Code

Here is some example code to give you a flavour of the various ways the module operates.

The user connects to a database and obtain a cursor as follows:

import web.database
connection = web.database.connect(adapter=’MySQLdb’, database=’testDatabase’)
cursor = connection.cursor()

They interact with the database through a series of methods which form a database abstraction layer. Each method
builds an SQL string in accordance with the syntax of the driver and executes it according to the options specified:

results = cursor.select(columns=[’name’], tables=[’testTable’], where=cursor.where("name = ’James’"), fetch=True)

Results could instead be retrieved as follows iffetchwasFalse :

results = cursor.fetchall(format=’dict’)

Results are automatically converted to the defined types and returned in the correct format.

web.database cursors also support the execute() statement and qmark style parameter substitutions:

cursor.execute("select name from testTable where name = ?", [’James’])

The SQL is parsed, the parameters converted to SQL and inserted in the correct places and the appropriate abstraction
layer method is executed.

Theweb.database field types are stored in a table in the database so that theweb.database driver knows the
field types and names of the fields in the tables so that conversions can be made.

TheConnection object has an attribute.tables which is a dictionary ofTable objects describing everything
web.database knows about the tables. EachTable object is made up ofColumn objects containing field infor-
mation and converters for each field.

After a SELECTstatement the cursor attribute.info contains a list ofColumn objects for the columns selected to
provide all the information available about those columns as well as conversion methods.

If the user needs to access the underlying DB-API driver using its own SQL dialect instead of the portable
web.database one he can do so easily in two ways:

24 Chapter 1. Web Modules

cursor.execute("select name from testTable where name = ’James’", mode=’direct’)
cursor.baseCursor.execute("select name from testTable where name = ’James’")

All the methods and objects have similar functionality to allow the user access to the underlying driver.

The use of an object relational mapper inweb.database.object means forms can be automatically generated to
provide data access.

1.4.2 Introduction

Understanding Field Types

The information you send to the database and the information retrieved from the database will be automatically con-
verted to the correct formats so that you can treat the values as normal Python objects.

Traditional SQL databases usually have support for a number of different fields. Date fields behave differently to
integer fields for example. All of the fields are set using an SQL representation of the data in the form of a string and
all of the queries from the database return strings.

Theweb.database module provides ten field types and rather than passing information to and from the database
as specially SQL encoded strings, you can also pass it as a python data structure. For example to set anInteger
field you could give the cursor an integer. To set aDate field you would give the cursor adatetime.date object.
Theweb.database cursor would do all the conversion for you.

Furthermore when you retrieve information from the database thecursor will convert the strings recieved back into
Python objects so that you never need to worry about the encodings.

This doesn’t sound like too much of a big deal but because different databases handle different datatypes in slightly
different ways your SQL could have different results on different databases. Programming with aweb.database
cursor removes these inconsistencies.

Here are the supported datatypes:

Type Description
Bool True or False
Integer Any Python integer (not Python Long or Decimal)
Long Any Python long integer between -9223372036854775808 and 9223372036854775807
Float Any Python floating point number
String A string of 255 characters or less (Not unicode?) [a]
Text A 24-bit string [b]
Binary A 24-bit binary string [b]]
Date Any valid Pythondatetime.date object. Takes values in the form of pythondatetime objects. Only stores days, months and years, any other information is truncated. Dates from0001-01-01 to 9999-12-31 . [c]
Time Any valid Pythondatetime.time object. Takes values in the form of pythondatetime objects. Only stores hours, minutes and seconds, any other information is truncated. [c]
Datetime Any valid Pythondatetime.datetime object. Takes values in the form of pythondatetime objects. Only stores days, months, years, hours, minutes and seconds, any other information is truncated. [c]

[a] Some databases make a distinction between short strings (often named VARCHAR) and long strings (often TEXT).
Short string fields are normally faster and so a distinction is also made in this specification.

[b] Although Python supports strings of greater than 24 bit, a lot of databases do not and so in order to be compatible
with those databases Binary and String objects should be no longer than 24 bit.

[c] Although Python ¡ 2.3 does not support datetime objects, pure Python compatible libraries exist for Python ¡ 2.3
and these can be used instead so it makes sense to use the standard Python types where possible.

The values you pass to thecursor.execute() method should be of the correct type for the field they are repre-

1.4. web.database — SQL database layer 25

senting. The values returned by thecursor.fetchall() method will automatically be returned as the appropriate
Python type.

For example,Bool fields should have the Python valuesTrue or False , Long fields should be a valid Pythonlong
etc.

There are some exceptions:

String fields should contain Python strings of 255 characters of less.Text fields should contain 24 bit strings less.
For strings longer than this length you should consider saving the string in a file and saving the filename in the database
instead.

Date , Datetime and Time fields take Python datetime.date , datetime.datetime and
datetime.time objects respectively.

Unfortunately Python 2.2 and below do not support thedatetime module. Howeverweb.database uses a
compatibility module that behaves closely enough for most purposes. Simply importweb.database and then you
can import the datetime module automatically. This is what it looks like at the Python prompt:

Python 2.2.3 (#42, May 30 2003, 18:12:08) [MSC 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import \module{web.database}
>>> import datetime
>>> print datetime.date(2004,11,24)
2004-11-24
>>>

1.4.3 Connecting to a Database

Connecting to a database is really very easy. The code below will connect to a MySQL database named ’test’.

import web, web.database
connection = web.database.connect(adapter="mysql", database="test")

Below is a description of the full range of parameters theconnect() function can take (Obviously not all of the
database support all of the parameters):

connect (adapter,[database,][user,][password,][host,][port,][socket,][**params])
Constructor for creating a connection to a database. Returns aConnection object. Not all databases will use
all the parameters, but databases should use the parameters specified and not abbreviated versions. Any more
complex parameters are passed directly to the underlying driver’sconnect() method.

adapterThe type of database to connect to. Can currently be’MySQL’ , ’PySQLite’ or ’web.database
’ but it is hoped that most database drivers will eventually be supported.

databaseThe database name to connect to.

userThe username to connect with.

passwordThe password to use.

prependA string to be transparantly used in front of all database tables.

hostThe host to connect to if the database is running on a remote server.

portThe port to connect to if the database is running on a remote server.

socketThe socket to connect to if the database is running locally and requires a socket.

26 Chapter 1. Web Modules

**paramsAny other parameters to be passed to the driver

Here are some examples:

Connect to the unpassworded MySQL databaseMyDatabase on a local server connected through a socket
‘ /tmp/mysqld.sock’. Another common socket file used is ‘/tmp/mysql.sock’.

connection = web.database.connect(
adapter="mysql",
database="MyDatabase",
socket="/tmp/mysqld.sock",

)

Connect to a the databaseMyDatabase asusername with passwordpassword . The MySQL server is runing
remotely atmysql.example.com on port3336 :

connection = web.database.connect(
adapter="mysql",
database="MyDatabase",
host="mysql.example.com",
port="3336",
user="username",
password="password",

)

Connect to theweb.database database in the directory ‘C:/TestDirectory’

connection = web.database.connect(
adapter="SnakeSQL",
database="C:/TestDirectory",

)

Note: Windows users may find it easier to use forward slahes in paths to avoid having to quote backslashes. Both
work equally well.

1.4.4 Using a Table Prepend

Theweb.database connection object also supports using a table prepend which is a string prepended to every
table theweb.database module uses but is totally transparent to the programmer.

You can use a table prepend like this:

connection = web.database.connect(
adapter="SnakeSQL",
database="C:/TestDirectory",
prepend = ’Test’,

)

Every table created will have the wordTest prepended to its name but you would access the database as if no
prepend existed. For example if you created tables namedPeople andHouses they would actually be created as

1.4. web.database — SQL database layer 27

TestPeople andTestHouses but a call tocursor.tables() would return(’People’, ’Houses’) so
that you can treat the database as if no prepend exists.

This is very handy as it means that you could, for example, setup test, development and production environments
all within the same database simply by modifying the table prepend and no other changes to your code need to be
made. It also means you can run more than one copy of code which uses a database in the same database but with
each connection having a different table prepend. This is useful in a shared hosting environment where the number of
databases you have access to is restricted.

1.4.5 Cursor Options

Once you have connected to the database you will need aCursor object with which to manipulate the database.
Cursor stands for a ”CURrent Set Of Results”.

Once we have the connection to the database,connection , we can easily create a cursor by calling the
connection ’s cursor() method.

import web, web.database
connection = web.database.connect(adapter="mysql", database="test")
cursor = connection.cursor()

The next sections show you the different ways to use thecursor .

1.4.6 Executing SQL

Theexecute() method is used to retrieve information from a database and looks like this:

cursor.execute("SELECT * FROM Test")

or

cursor.execute("INSERT INTO Test (dateColumn, numberColumn) VALUES (’2004-11-8’, 4)")

web.database uses? style parameter substitution. This means theexecute() method can take a list of values
to substitute for any unquoted? symbols in the SQL string.

values = [datetime.date(2004,11,8), 4]
cursor.execute("INSERT INTO Test (dateColumn, numberColumn) VALUES (?, ?)", values)

or

cursor.execute(
sql="UPDATE Test SET dateColumn=?, numberColumn=? WHERE stringColumn=?",
parameters=[datetime.date(2004,11,8), 4, "where string"]

)

At first sight the parameter substitution doesn’t seem to offer much of an advantage but in fact it is extremely useful
becauseweb.database will automatically convert the values to SQL for you so that you don’t need to convert them

28 Chapter 1. Web Modules

yourself.

Note: Parameter substitution can be done for any value which needs conversion. This includes default values in
CREATEstatements and values inINSERT andUPDATEstatements orWHEREclauses. Parameter substitutions are
not available for strings which do not need conversions such as table names, column names etc.

The module also supportsexecutemany() . This method does the same asexecute() except it executes once
for each sequence in the values parameter. For example:

cursor.executemany(
sql="UPDATE Test SET dateColumn=?, numberColumn=? WHERE stringColumn=?",
parameters=[

[datetime.date(2004,11,8), 4, "string1"],
[datetime.date(2004,11,8), 5, "string2"],
[datetime.date(2004,11,8), 6, "string3"],

]
)

In web.database this is no more efficient than executing a number of normalcursor.execute() methods.

web.database also provides cursor abstraction methods which provide a functional interface to execute SQL. For
example here we insert some values into a table.

cursor.insert(
table = ’testTable’,
columns = [’col1’,’col2’],
values = [’val1’, 2],

)

Cursor abstraction methods exist for all the SQL commands supported byweb.database . These are described
later.

Thecursor() method takes the following options and will return the appropriate cursor object:
cursor ([execute=True], [format=’tuple’], [convert=True], [mode=’portable’])

The default values which the cursor abstraction methods will take for the values ofexecute, formatandconvert
can be set using this method.

formatThis can be’tuple’ to return the results as a tuples,’text’ to return as text wrapped to 80 characters
for display in a terminal,’dict’ to return the results as dictionaries or’object’ to return the results
as result objects to be treated as dictionaries, tuples or via attribute access.

convertConvert the results to standard formats (should beTrue for most users)

executeUsed in the cursor SQL methods. IfTrue then rather than returning an SQL string, the methods execute
the results

modeThe default mode for theexecute() method. Can be’portable’ to use the SQL abstraction methods
or ’direct’ to send the SQL directly to the underlying cursor.

1.4.7 Retrieving Results

Once you have executed a SELECT statement you will want to retrieve the results. This is done using the
cursor.fetchall() method:

1.4. web.database — SQL database layer 29

cursor.execute("SELECT * FROM Test")
results = cursor.fetchall()

The results variable will always contain a tuple of tuples of fields. If the query matched no rows, result will be
((),) . If it matched one row it will be in the form((col1, col2, col3, etc),) . If it matched more than
one it will be in the form((col1, col2, col3, etc), (col1, col2, col3, etc), etc)

You can print the results like this:

for row in cursor.fetchall():
print "New Row"
for field in row:

print field

The cursor.fetchall() method will return the same results until another SQL query is executed using
cursor.execute() .

1.4.8 Transactions, Rollbacks and Committing Changes

Most databases supported byweb.database support basic transactions. This means that you can make a number
of changes to the database but if your program crashes your changes will not be saved so that the database is not left
in an unstable state where you have updated some tables but not others.

Changes are only saved (or committed) to the database when you call theconnection object’scommit() method:

connection.commit()

If you have made a mistake and want to lose all the changes you have made, you can rollback the database to its
previous state using theconnection object’srollback() method:

connection.rollback()

Finally, if you have finished using a connection you can close it using theconnection object’sclose() method.
This will also rollback the database to the time you last committed your changes so if you want to save your changes
you should callcommit() first.

connection.commit()
connection.close()

Note: Please note that making these changes to theconnection object will automatically affect allcursor objects
of that connection as well since they all share the same connection object.

Warning: The MySQL adapter doesnot support transactions. Results are automatically committed. If anyone can
suggest an effective way around this please let me know!

30 Chapter 1. Web Modules

1.4.9 Exporting and Importing SQL

For databases that are implemented entirely in portable mode you can export the SQL needed to entirely recreate the
database using thecursor.export() method.

#!/usr/bin/env python

import sys; sys.path.append(’../../../’) # show python where the modules are

import web.database
connection = web.database.connect(

adapter="snakesql",
database="database-export",
autoCreate = 1,

)
cursor = connection.cursor()
originalSQL = """CREATE TABLE People(LastName String PRIMARY KEY, FirstName String , Number Integer, DateOfBirth Date)
CREATE TABLE Houses(House Integer, Owner String REQUIRED FOREIGN KEY=People)
INSERT INTO People (LastName, FirstName, Number, DateOfBirth) VALUES (’Smith’, ’John’, 10, ’1980-01-01’)
INSERT INTO People (LastName, FirstName, Number, DateOfBirth) VALUES (’Doe’, ’James’, 3, ’1981-12-25’)
INSERT INTO Houses (House, Owner) VALUES (1, ’Smith’)
INSERT INTO Houses (House, Owner) VALUES (2, ’Smith’)
INSERT INTO Houses (House, Owner) VALUES (3, ’Doe’)"""
for sql in sqls.split(’\n’):

cursor.execute(sql)
exportedSQL = cursor.export()
if exportedSQL == originalSQL:

print "The exported SQL exaclty matches the original"
print exportedSQL

else:
print "The SQL is different"
print exportedSQL

connection.close() # Close the connection without saving changes

Note: The SQL exported from the database may not exactly match the SQL which was used to create it since there is
some redundancy in SQL syntax but the effect of the SQL will be the same.

Warning: This functionality is fairly new and hasn’t yet had extensive testing so please be warned there may be
issues.

To import the SQL generated by theexport() method you can use the following code:

exportedSQL = cursor.export()
for sql in exportedSQL.split(’\n’):

cursor.execute(sql, mode=’portable’)

1.4.10 Using the Interactive Prompt

Theweb.database distribution comes with an Interactive Prompt which allows you to enter SQL queries directly
into a database and see the results as a table of data. The ‘sql.py’ file is in the ‘scripts’ directory of the distribution.

Warning: Each time an SQL command is issued a new connection is made and the result of the SQL statement is
committed. You cannot rollback changes made through the interactive prompt.

1.4. web.database — SQL database layer 31

Starting the Prompt

To see a list of all the available options for starting an Interactive Prompt session, load a command prompt and type
the following at the command line:

> python sql.py -h

This will display all the options available to you for using the interactive prompt. For example to connect to an SQLite
database named ‘test.db’ you might use the following command:

> python sql.py -a sqlite -d test.db

This will run the interactive prompt. You should see something similar to this:

SQLite Interactive Prompt
Type SQL or "exit" to quit, "help", "copyright" or "license" for information.
sql>

It looks a bit like the Python prompt only allows SQL queries to be entered.

When you connect to a database using the SnakeSQL or SQLite adapters the database specified is automatically created
if it doesn’t already exist.

Options which are specific to the underlying database and which are not handled through any of the options listed by
usingsql.py -h can be entered using the--more switch and specifying a string containing a Python dictionary.
For example:

> python sql.py -a sqlite -d test.db --more "{’customOption1’:5, ’customOption2’: ’value’}"

Using the Prompt

Try selecting some information form the tabletestTable :

sql> SELECT * FROM testTable
Error: Table ’testTable’ not found.
sql>

Unsurprisingly, this gives an error message since we haven’t yet created a table. All the supported commands, includ-
ing creating a table will be demonstrated in the section SQL Reference.

If you are new to SQL you should read the SQL Reference and test the examples using the interactive prompt.

To exit the Interactive Prompt typeexit and press Enter:

sql> exit

C:\Documents and Settings\James\Desktop\scripts>

32 Chapter 1. Web Modules

You will be returned to the usual command prompt.

Some test SQL commands can be sound in the file ‘web/external/PDBC/database/external/SnakeSQL/test/test.sql’.
You can copy and paste the commands into the prompt and you should see output similar to that specified in the
‘ test.sql’ file.

1.4.11 Special Characters

This section describes how to deal with special characters in Python andweb.database .

In Python

Within a Python string, certain sequences have special meaning. Each of these sequences begins with a backslash\ ,
known as the escape character. The values (and different escape methods) allowed in string literals are described in
the Python documentation athttp://www.python.org/doc/current/ref/strings.html. This is a brief summary.

Python recognizes the following escape sequences:

\\ Backslash (\)
\’ Single quote (’)
\" Double quote (")
\a ASCII Bell (BEL)
\b ASCII Backspace (BS)
\f ASCII Formfeed (FF)
\n ASCII Linefeed (LF)
\N{name} Character named name in the Unicode database (Unicode only)
\r ASCII Carriage Return (CR)
\t ASCII Horizontal Tab (TAB)
\uxxxx Character with 16-bit hex value xxxx (Unicode only)
\Uxxxxxxxx Character with 32-bit hex value xxxxxxxx (Unicode only)
\v ASCII Vertical Tab (VT)
\ooo Character with octal value ooo
\xhh Character with hex value hh

These sequences are case sensitive. For example,\b is interpreted as a backspace, but\B is not.

You can use these characters in SQL exactly the same way as you would in Python. For example’end of one
line\nstart of new line’ is a valid SQL string containing a line break in the middle and could be used like
this:

cursor.execute("INSERT INTO table (columnOne) VALUES (’end of one line\nstart of new line’)")

There is one important point to note about how Python (and henceweb.database) deals with these escape char-
acters. If a string contains a backslash\ but the character after the backslash is not a character which can be escaped
then the single backslash is treated as a single backslash. If the character can be used in an escape sequence then the
backslash is treated as an escape character and the character is escaped.

Note: All examples in this section are from the Python prompt not theweb.database one.

For example:

1.4. web.database — SQL database layer 33

Python 2.4 (#60, Nov 30 2004, 11:49:19) [MSC v.1310 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> print ’hello\%world’
hello\%world
>>> print ’hello\nworld’
hello
world
>>>

If a string contains both escaped and non-escaped characters Python guesses which are backslashes and which are
escape characters:

>>> print ’hello\nworld\%again’
hello
world\%again
>>>

If a string contains a double backslash\\ it is always treated as an escaped backslash character and printed as\ .

>>> print ’\\%’
\%
>>> print ’\%’
\%

This means that the following expression is True:

>>> print ’\\%’ == ’\%’
True
>>>

But the following is not:

>>> print ’\\\\%’ == ’\\%’
False
>>>

When writing Python strings you have to be very careful how the backslash character is being used and then you will
have no problems.

Interactive Prompt

The Interactive Prompt obeys the same special character rules as Python and SQL described above. One point which
could cause confusion is the way the Interactive Prompt displays strings. If strings can be easily displayed they are.
Otherwise therepr() function is used on them to explicitly display all their escape characters. This means all
genuine backslashes appear double quoted.

34 Chapter 1. Web Modules

Python 2.4 (#60, Nov 30 2004, 11:49:19) [MSC v.1310 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> print repr(’hello\nworld\%once\\more’)
’hello\nworld\\%once\\more’

In SQL

In SQL all strings must be properly quoted using single quotes. To insert a string likeJames into the database, we
use the SQL’James’ but what if we want to insert the stringtail’s ? Because it has a’ character in it we can’t
simply do’tail’s’ as the SQL parser won’t know which’ ends the string. Instead we use’tail’’s’ . Double
single quotes (’’) in SQL mean a’ character.

The single quote character’ is the only character which needs special treatment in SQL all the others like\n behave
exactly as they do in Python as described above.

For example:

cursor.execute("INSERT INTO table (columnOne) VALUES (’James’’s’)")

The Easy Way

If you are using the advanced cursor methods likecursor.insert() or cursor.update() (described later)
or parameter substitution (described earlier), the easiest way to deal with special characters is to do nothing with them
at all. The methods will automatically handle the conversions for you.

For example:

cursor.insert(
table=’table’,
columns=[’columnOne’],
values=["James’s"],

)

or

cursor.execute("INSERT INTO table (columnOne) VALUES (?)", "James’s")

If you want explicitly want to use the cursor methods likecursor.insert() or cursor.update() but with
quoted SQL strings rather than having the conversions done automatically you can do so like this:

cursor.insert(
table=’table’,
columns=[’columnOne’],
__sqlValues=["’James’’s’"],

)

1.4. web.database — SQL database layer 35

1.4.12 SQL Reference

The SQL parser to parsecursor.execute(sql, mode=’portable’) statements has already been written
and is available as a standalone module namedSQLParserTools . The approach of parsing an SQL statement just
to rebuild it again in an abstraction layer function might sound unnecessary but the advantage is that the SQL written
in this manner is guaranteed to function in the same way across allweb.database databases.

This specification implements what is considered the lowest possible useful SQL feature set which is commonly used
and which all databases will support. A balance has had to be made between including useful features and excluding
features which only some database engines support. Also no duplication of features has been included. For example
BETWEENcan be implemented using> and< operators in theWHEREclause so has not been included but theLIKE
operator has.

The specification includes:

SQL SELECT

SQL WHERE

SQL INSERT

SQL UPDATE

SQL DELETE

SQL ORDER BY

SQL AND & OR

Simple Joins

SQL CREATE

SQL DROP

NULL values

Database Tables A database most often contains one or more tables. Each table is identified by a name (e.g.
Customers or Orders). Tables contain records (rows) with data.

Below is an example of a table calledPerson :

+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
| Smith | John | 10 | 1980-01-01 |
+----------+-----------+--------+-------------+
| Doe | John | 3 | 1981-12-25 |
+----------+-----------+--------+-------------+

The table above contains two records (one for each person) and four columns (LastName, FirstName, Address, and
DateOfBirth).

36 Chapter 1. Web Modules

Queries With SQL, we can query a database and have a result set returned.

A query looks like this:

SELECT LastName FROM Person

Gives a result set like this:

+----------+
| LastName |
+----------+
| Smith |
+----------+
| Doe |
+----------+

Note: Some database systems require a semicolon at the end of the SQL statement.web.database does not.

The SELECT Statement

The SELECT statement is used to select data from a table. The tabular result is stored in a result table (called the
result-set).

SELECT column_name(s) FROM table_name

Select Some Columns To select the columns namedLastName andFirstName , use a SELECT statement like
this:

SELECT LastName, FirstName FROM Person

Table Person:

+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
| Smith | John | 10 | 1980-01-01 |
+----------+-----------+--------+-------------+
| Doe | John | 3 | 1981-12-25 |
+----------+-----------+--------+-------------+

Result Set:

+----------+-----------+
| LastName | FirstName |
+----------+-----------+
| Smith | John |
+----------+-----------+
| Doe | John |
+----------+-----------+

The order of the columns in the result is the same as the order of the columns in the query.

1.4. web.database — SQL database layer 37

Select All Columns To select all columns from thePerson table, use a* symbol instead of column names, like
this:

SELECT * FROM Person

Result Set:

+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
| Smith | John | 10 | 1980-01-01 |
+----------+-----------+--------+-------------+
| Doe | John | 3 | 1981-12-25 |
+----------+-----------+--------+-------------+

The WHERE Clause

The WHERE clause is used to specify a selection criterion.

The syntax of the where clause is:

SELECT column FROM table WHERE column operator value

With the WHERE clause, the following operators can be used:

Operator Description
-------- -----------
= Equal
<> Not equal
> Greater than
< Less than
>= Greater than or equal
<= Less than or equal
LIKE Pattern match (described later)
IS Used for comparison to NULL
IS NOT Used for comparison to NULL

In some versions of SQL the<> operator may be written as!= but not inweb.database . Note that the equals
operator in SQL is= not== as it is in Python.

The= and<> operators cannot be used to compareNULLvalues because a field cannot be equal to nothing. Instead
theIS andIS NOT operators should be used.

Using the WHERE Clause To select only the people whose last name areSmith , we add a WHERE clause to the
SELECT statement:

SELECT * FROM Person WHERE LastName=’Smith’

Person table:

38 Chapter 1. Web Modules

+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
| ’Smith’ | ’John’ | 10 | 1980-01-01 |
| ’Doe’ | ’John’ | 3 | 1981-12-25 |
+----------+-----------+--------+-------------+

Result set:

+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
| ’Smith’ | ’John’ | 10 | 1980-01-01 |
+----------+-----------+--------+-------------+

Using Quotes Note that we have used single quotes around the conditional values in the examples.

SQL uses single quotes around text values (some database systems will also accept double quotes, not
web.database). Numeric values should not be enclosed in quotes.

For text values:

This is correct:

SELECT * FROM Person WHERE LastName=’Smith’

This is wrong:

SELECT * FROM Person WHERE LastName=Smith

For numeric values:

This is correct:

SELECT * FROM Person WHERE Number>10

This is wrong:

SELECT * FROM Person WHERE Number>’10’

The LIKE Condition TheLIKE condition is used to specify a search for a pattern in a column.

SELECT column FROM table WHERE column LIKE pattern

A %sign can be used to define wildcards (missing letters in the pattern).

The following SQL statement will return people with first names that start with an ’O’:

1.4. web.database — SQL database layer 39

SELECT * FROM Person WHERE FirstName LIKE ’O%’

The following SQL statement will return people with first names that end with an ’a’:

SELECT column FROM table WHERE FirstName LIKE ’%a’

The following SQL statement will return people with first names that contain the pattern ’la’:

SELECT column FROM table WHERE FirstName LIKE ’%la%’

You can use as many%characters as you need in the pattern to match zero or more characters. If you need to have an
actual%characters in the pattern you will need to escape it like this
%.

The following SQL statement will return values that end with a%character.

SELECT column FROM table WHERE Percentage LIKE ’%\%’

web.database does not support theBETWEENcondition since the same thing can be achieved using comparison
operators.

The INSERT INTO Statement

The INSERT INTO statement is used to insert new rows into a table.

Syntax

INSERT INTO table_name (column1, column2,...) VALUES (value1, value2,....)

Insert a New Row This Person table:

+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
| ’Smith’ | ’John’ | 10 | 1980-01-01 |
| ’Doe’ | ’John’ | 3 | 1981-12-25 |
+----------+-----------+--------+-------------+

And this SQL statement:

INSERT INTO Person (LastName, FirstName, Number, DateOfBirth)
VALUES (’Blair’, ’Tony’, 8, ’1953-05-06’)

Note: web.database expects the SQL to all be on one line. The line break here is for formatting

40 Chapter 1. Web Modules

Will give this result:

+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
’Smith’	’John’	10	1980-01-01
’Doe’	’John’	3	1981-12-25
’Blair’	’Tony’	8	1953-05-06
+----------+-----------+--------+-------------+

If you are extremely careful, the column names can be omitted as long as the values are specified in the same order as
the columns when the table was created.

The SQL below would achieve the same result as the previous SQL statement:

INSERT INTO Person VALUES (’Blair’, ’Tony’, 8, ’1953-05-06’)

Warning: It is very easy to make a mistake with the shortened syntax so it is recommended you use the full version
and specify the column names.

The UPDATE Statement

The UPDATE statement is used to modify the data in a table.

Syntax:

UPDATE table_name SET column_name = new_value WHERE column_name = some_value

Update one Column in a Row Person table

+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
’Smith’	’John’	10	1980-01-01
’Doe’	’John’	3	1981-12-25
’Blair’	’Tony’	8	1953-05-06
+----------+-----------+--------+-------------+

We want to add a change Tony Blair’s first name toJames:

UPDATE Person SET FirstName = ’James’ WHERE LastName = ’Blair’

Person table

1.4. web.database — SQL database layer 41

+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
’Smith’	’John’	10	1980-01-01
’Doe’	’John’	3	1981-12-25
’Blair’	’James’	8	1953-05-06
+----------+-----------+--------+-------------+

Update several Columns in a Row We want to change the number of everyone with a FirstNameJohn and make
their DateOfBirth all1980-01-01 :

UPDATE Person SET Number = 1, DateOfBirth = ’1980-01-01’ WHERE FirstName = ’John’

Result:

+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
’Smith’	’John’	1	1980-01-01
’Doe’	’John’	1	1980-01-01
’Blair’	’James’	8	1953-05-06
+----------+-----------+--------+-------------+

The DELETE Statement

The DELETE statement is used to delete rows in a table.

Syntax

DELETE FROM table_name
WHERE column_name = some_value

Delete a Row Person:

+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
’Smith’	’John’	1	1980-01-01
’Doe’	’John’	1	1980-01-01
’Blair’	’James’	8	1953-05-06
+----------+-----------+--------+-------------+

John Doe is going to be deleted:

42 Chapter 1. Web Modules

DELETE FROM Person WHERE LastName = ’Doe’

Result

+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
| ’Smith’ | ’John’ | 1 | 1980-01-01 |
| ’Blair’ | ’James’ | 8 | 1953-05-06 |
+----------+-----------+--------+-------------+

Delete All Rows It is possible to delete all rows in a table without deleting the table. This means that the table
structure and attributes will be intact:

DELETE FROM table_name

Result

+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
+----------+-----------+--------+-------------+

ORDER BY

The ORDER BY keyword is used to sort the result.

Sort the Rows The ORDER BY clause is used to sort the rows.

Orders:

+-------------+-------------+
| Company | OrderNumber |
+-------------+-------------+
’Asda’	5678
’Morrisons’	1234
’Tesco’	2345
’Morrisons’	7654
+-------------+-------------+

To display the companies in alphabetical order:

SELECT Company, OrderNumber FROM Orders ORDER BY Company

1.4. web.database — SQL database layer 43

Result:

+-------------+-------------+
| Company | OrderNumber |
+-------------+-------------+
’Asda’	5678
’Morrisons’	1234
’Morrisons’	7654
’Tesco’	2345
+-------------+-------------+

Example

To display the companies in alphabetical order AND the order numbers in numerical order:

SELECT Company, OrderNumber FROM Orders ORDER BY Company, OrderNumber

Result:

+-------------+-------------+
| Company | OrderNumber |
+-------------+-------------+
’Asda’	5678
’Morrisons’	1234
’Morrisons’	7654
’Tesco’	2345
+-------------+-------------+

Example

To display the companies in reverse alphabetical order:

SELECT Company, OrderNumber FROM Orders ORDER BY Company DESC

Result:

+-------------+-------------+
| Company | OrderNumber |
+-------------+-------------+
’Tesco’	2345
’Morrisons’	1234
’Morrisons’	7654
’Asda’	5678
+-------------+-------------+

Example

To display the companies in alphabetical order AND the order numbers in reverse numerical order:

44 Chapter 1. Web Modules

SELECT Company, OrderNumber FROM Orders ORDER BY Company ASC, OrderNumber DESC

Result:

+-------------+-------------+
| Company | OrderNumber |
+-------------+-------------+
’Asda’	5678
’Morrisons’	7654
’Morrisons’	1234
’Tesco’	2345
+-------------+-------------+

AND & OR

AND and OR join two or more conditions in a WHERE clause.

The AND operator displays a row if ALL conditions listed are true. The OR operator displays a row if ANY of the
conditions listed are true.

Original Table (used in the examples)

+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
’Smith’	’John’	1	1980-01-01
’Doe’	’John’	1	1980-01-01
’Blair’	’James’	8	1953-05-06
+----------+-----------+--------+-------------+

Use AND to display each person with the first name equal toJohn , and the last name equal toSmith :

SELECT * FROM Person WHERE FirstName=’John’ AND LastName=’Smith’

Result Set

+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
| ’Smith’ | ’John’ | 1 | 1980-01-01 |
+----------+-----------+--------+-------------+

Use OR to display each person with the first name equal toJames, or the last name equal toSmith :

SELECT * FROM Person WHERE FirstName=’James’ OR LastName=’Smith’

Result Set

1.4. web.database — SQL database layer 45

+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
| ’Smith’ | ’John’ | 1 | 1980-01-01 |
| ’Blair’ | ’James’ | 8 | 1953-05-06 |
+----------+-----------+--------+-------------+

Example

You can also combine AND and OR use parentheses to form complex expressions:

SELECT * FROM Person WHERE (FirstName=’James’ AND LastName=’Smith’) OR LastName=’Blair’

Result Set

+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
| ’Blair’ | ’James’ | 8 | 1953-05-06 |
+----------+-----------+--------+-------------+

NULL Values

An important feature ofweb.database is its ability to supportNULLvalues. A field which contains aNULLvalue
is simply a field where no value has been set or the value as been set to contain no value. This is quite different, for
example, from aString field which has been set a value’’ , an empty string.

Original Table (used in the examples)

+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
’Smith’	’John’	1	1980-01-01
’Doe’	’John’	1	1980-01-01
’Blair’	’James’	8	1953-05-06
+----------+-----------+--------+-------------+

Our query

UPDATE Person SET FirstName=NULL WHERE LastName=’Doe’

Our table now looks like this:

+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
’Smith’	’John’	1	1980-01-01
’Doe’	NULL	1	1980-01-01
’Blair’	’James’	8	1953-05-06
+----------+-----------+--------+-------------+

46 Chapter 1. Web Modules

This is quite different from this query which simply sets the FirstName to the string’NULL’ not the valueNULL:

UPDATE Person SET FirstName=’NULL’ WHERE FirstName IS NULL

Our table now looks like this:

+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
’Smith’	’John’	1	1980-01-01
’Doe’	’NULL’	1	1980-01-01
’Blair’	’James’	8	1953-05-06
+----------+-----------+--------+-------------+

This is one of the reasons why it is important to use the correct quotations around values in you SQL.

Note: We use theIS operator rather than the= operator to compare fields toNULLvalues.

If you inserted a row into the table without specifying all the columns the columns you had not specified would contain
the valueNULLunless you had specified aDEFAULTvalue when you created the table.

CREATE

To create a table in a database:

Syntax

CREATE TABLE table_name
(
column_name1 data_type options,
column_name2 data_type options,
.......
)

Example

This example demonstrates how you can create a table namedPerson , with four columns. The column names will
beLastName , FirstName , Number, andDateOfBirth :

CREATE TABLE Person (LastName String, FirstName String, Number String, DateOfBirth Date)

The data type specifies what type of data the column can hold. The table below contains the data types supported by
web.database :

1.4. web.database — SQL database layer 47

Type Description
Bool True or False
Integer Any Python integer (not Python Long or Decimal)
Long Any Python long integer between -9223372036854775808 and 9223372036854775807
Float Any Python floating point number
String A string of 255 characters or less (Not unicode?) [a]
Text A 24-bit string [b]
Binary A 24-bit binary string [b]]
Date Any valid Pythondatetime.date object. Takes values in the form of pythondatetime objects. Only stores days, months and years, any other information is truncated. Dates from0001-01-01 to 9999-12-31 . [c]
Time Any valid Pythondatetime.time object. Takes values in the form of pythondatetime objects. Only stores hours, minutes and seconds, any other information is truncated. [c]
Datetime Any valid Pythondatetime.datetime object. Takes values in the form of pythondatetime objects. Only stores days, months, years, hours, minutes and seconds, any other information is truncated. [c]

[a] Some databases make a distinction between short strings (often named VARCHAR) and long strings (often TEXT).
Short string fields are normally faster and so a distinction is also made in this specification.

[b] Although Python supports strings of greater than 24 bit, a lot of databases do not and so in order to be compatible
with those databases Binary and String objects should be no longer than 24 bit.

[c] Although Python ¡ 2.3 does not support datetime objects, pure Python compatible libraries exist for Python ¡ 2.3
and these can be used instead so it makes sense to use the standard Python types where possible. The options can be
used to further specify what values the field can take. They are described in the next sections.

REQUIRED In web.database , REQUIREDsimply means that the field cannot contain aNULL value. If you
insert a row into a table with aREQUIREDfield, you must specify a value for the field unless you have also specified
the field to have aDEFAULTvalue which is notNULL in which case the default value will be used. If you try to set
the field toNULLan error will be raised.

To create a table withLastName andFirstName columns whereLastName could not take aNULL value you
would use:

CREATE TABLE Person (LastName String REQUIRED, FirstName String)

UNIQUE In web.database , a UNIQUEfield is one in which all values in the table must be different. An error
occurs if you try to add a new row with a value that matches an existing row. The exception to this is that if a column
is not specified asREQUIRED, i.e. it is allowed to containNULLvalues, it can contain multipleNULLvalues.

To create a table withLastName andFirstName columns where all the values ofLastName had to be different
or NULLyou would use:

CREATE TABLE Person (LastName String UNIQUE, FirstName String)

If a field is specified asUNIQUE, web.database will not also let you specify aDEFAULTvalue.

Bool, Float, Text and Binary fields cannot be unique.

PRIMARY KEY PRIMARY KEYcolumns are unique and cannot takeNULLvalues. Each table can only have one
field specified asPRIMARY KEY.

Primary keys can sometimes be used byweb.database ’s drivers to speed up database queries. APRIMARY KEY
column is a column where the value is used to uniquely identify the row.

To create a table withLastName andFirstName columns whereLastName is a primary key use:

48 Chapter 1. Web Modules

CREATE TABLE Person (LastName String PRIMARY KEY, FirstName String)

Bool, Float, Text and Binary fields cannot be primary keys.

DEFAULT TheDEFAULToption is used to specify a default value for a field to be used if a value is not specified
when a new row is added to a table.

To create a table withLastName andFirstName columns where the default value forLastName is ’Smith’
we would use:

CREATE TABLE Person (LastName String DEFAULT=’Smith’, FirstName String)

You cannot specify aDEFAULTif the column is aPRIMARY KEYor UNIQUE.

If no DEFAULTis specified theDEFAULTis NULL.

Binary and Text fields cannot have default values.

FOREIGN KEY The final option isFOREIGN KEY. If a column is specifiedFOREIGN KEYit cannot have any
other options. The table specified as providing the foreign key must have a primary key. It is the primary key value
which is used as a foreign key in the other table.

For example:

CREATE TABLE Houses (House Integer, Owner String FOREIGN KEY=People)

Bool, Float, Text and Binary fields cannot be foreign key fields.

Foreign keys are described in more detail in the section on joins.

DROP Table

Delete a Table To delete a table (the table structure and attributes will also be deleted):

DROP TABLE table_name

Note: If you are using foreign key constraints you cannot drop a parent table if the child table still exists you should
drop the child table first.

If you want to drop more than one table you can use this alternative syntax:

DROP TABLE table1, table2, table3

FOREIGN KEY and Joins

Sometimes we have to select data from two or more tables to make our result complete. We have to perform a join.
Joins and the use of primary and foreign keys are inter-related.

1.4. web.database — SQL database layer 49

FOREIGN KEY Tables in a database can be related to each other with keys. A primary key is a column with a
unique value for each row. The purpose is to bind data together, across tables, without repeating all of the data in every
table.

In thePeople table below, theLastName column is the primary key, meaning that no two rows can have the same
LastName . TheLastName distinguishes two persons even if they have the same name.

When you look at the example tables below, notice that:

• TheLastName column is the primary key of thePeople table

• TheHouse column is the primary key of theHouses table

• TheOwner column in theHouse table is used to refer to the people in thePeople table.Owner is a foreign
key field.

People
+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
| Smith | John | 10 | 1980-01-01 |
+----------+-----------+--------+-------------+
| Doe | James | 3 | 1981-12-25 |
+----------+-----------+--------+-------------+

Houses
+-------+-------+
| House | Owner |
+-------+-------+
| 1 | Smith |
+-------+-------+
| 2 | Smith |
+-------+-------+
| 3 | Doe |
+-------+-------+

People may own more than one house. In our example John Smith owns both House1 and2. In order to keep the
database consistent you would not want to removeSmith from thePeople table or drop thePeople table because
theHouses table would still contain a reference toSmith . Similarly you wouldn’t want to insert or update a value
in theOwner column of theHouses table which didn’t exist as a primary key for thePeople table.

By specifying theOwner column of the Houses table as a foregin key these constraints are enforced by
web.database .

The SQL for the tables is below.Note: The line breaks in the firstCREATEstatement are for formatting;
web.database doesn’t support line breaks in SQL.

CREATE TABLE People (
LastName String PRIMARY KEY, FirstName String,
Number Integer, DateOfBirth Date

)
CREATE TABLE Houses (House Integer, Owner String FOREIGN KEY=People)

If a column is specifiedFOREIGN KEYit cannot have any other options. The table specified as providing the foreign
key must have a primary key. It is the primary key value which is used as a foreign key in the other table.

50 Chapter 1. Web Modules

Bool, Float, Text and Binary fields cannot be foreign key fields.

We can select data from two tables by referring to two tables, using the SQL below.Note: The line breaks are just for
formatting;web.database doesn’t support line breaks in SQL.

SELECT Houses.House, People.FirstName, Houses.Owner
FROM People, Houses
WHERE People.LastName=Houses.Owner

Here is the result

+--------------+------------------+--------------+
| Houses.House | People.FirstName | Houses.Owner |
+--------------+------------------+--------------+
1	’John’	’Smith’
2	’John’	’Smith’
3	’James’	’Doe’
+--------------+------------------+--------------+

and another example:

SELECT Houses.House, People.FirstName, Houses.Owner
FROM People, Houses
WHERE People.LastName=Houses.Owner and People.DateOfBirth<’1981-01-01’

Here is the result

+--------------+------------------+--------------+
| Houses.House | People.FirstName | Houses.Owner |
+--------------+------------------+--------------+
| 1 | ’John’ | ’Smith’ |
| 2 | ’John’ | ’Smith’ |
+--------------+------------------+--------------+

1.4.13 Cursor Abstraction Methods

This section describes how to use the following SQL methods of thecursor object:

select() , insert() , update() , delete() , create() , alter() , drop() , function()

These functions are designed to reflect the SQL syntax you would use if you were writing the SQL directly. For
example you might write:

SELECT fieldName FROM tableName
INSERT INTO tableName value1, value2

Accordingly theselect() andinsert() methods accept thefieldsandtableparameters in a different order. It is
reccomended however that you always specify parameters by name rather than relying on their order as future versions
may have different parameters in different places.

1.4. web.database — SQL database layer 51

See Also:

w3schools SQL Tutorial
(http://www.w3schools.com/sql/default.asp)

A good introduction to SQL commands can be found on the w3schools website at
http://www.w3schools.com/sql/default.asp.

Selecting Data

select (tables, columns, [values=[],][where=None,][order=None,][execute=None,][fetch=None,
][**params])

Build an SQL string according to the options specified and optionally execute the SQL and return the results in
the format specified. No error checking on field names if the SQL string is only being built. Strict error checking
is only performed when executing the code.

tablesA string containing the name of the table to select from or if selecting from multiple tables, a sequence of
table names.

columnsA sequence of column names to select. Can be a string if only one column is being selected. If selecting
from multiple tables, all column names should be in the form’tableName.columnName’

valuesA list of values to substitute for? in theWHEREclause specified bywhere.

whereThe WHERE clause as aweb.database list as returned bycursor.where() . If whereis a string it
is converted to the correct format.

orderThe ORDER BY clause as aweb.database list as returned bycursor.order() . If order is a string
it is converted to the correct format.

executeIf False the method returns the SQL string needed to perform the desired operations. IfTrue the SQL
is executed and the results converted and returned in the appropriate form. If not specified takes the value
specified in the cursor which by default isTrue

fetchWhether or not to fetch the results. IfTrue andexecuteis not specifiedexecuteis set toTrue . If True
andexecuteFalse an error is raised.

**paramsThe parameters to be passed to thefetchall() method iffetchis True

To select some information from a database using an SQL string you would use the following command:

SELECT column_name(s) FROM table_name

For example consider the table below:

Table Person
+----------+-----------+---------+-------------+
| LastName | FirstName | Address | DateOfBirth |
+----------+-----------+---------+-------------+
| Smith | John | Bedford | 1980-01-01 |
+----------+-----------+---------+-------------+
| Doe | John | Oxford | 1981-12-25 |
+----------+-----------+---------+-------------+

To retrieve a list of the surnames and dates of birth of all the people in the table you would use the following code:

52 Chapter 1. Web Modules

rows = cursor.select(
columns = [’LastName’, ’DateOfBirth’],
tables = [’Person’],
format = ’object’,

)

Note: If you have specifiedfetchasFalse in the cursor constructor you would need to specifyfetchasTrue here
to fetch the results, otherwise you would need to userows = cursor.fetchall() to actually fetch the results.

Since we have specifiedformat as ’object’ , the result from this call would be a tuple of TupleDescriptor objects
which can be treated as a tuple or a dictionary:

>>> for record in rows:
... print record[0], record[1]
... print record[’LastName’], record[’DateOfBirth’]
...
Smith 1980-01-01
Smith 1980-01-01
Doe 1981-12-25
Doe 1981-12-25

Using theselect() method, information you select from a field is automatically converted to the correct Python
type. Integer fields return Integers, Date fields returndatetime.date objects.

The where Parameter The example above selected everyLastName andDateOfBirth field from the table.
To limit the information selected you need to specify thewhere parameter in the same way you would for any SQL
query.

>>> rows=cursor.select(columns=[’LastName’],tables=[’Person’],where="LastName=’Smith’")
>>> for record in rows:
... print record[’LastName’], record[’DateOfBirth’]
...
’Smith’

We had to specify the valueSmith as properly encoded SQL since we specified the where clause as a string. Alter-
natively we could have used thecursor.where() method to help instead.

where (where,[values=[]])
Return a parsedWHEREclause suitable for use in theselect() , update() anddelete() methods of the
cursor object.

whereA string containing theWHEREclause. Can include theLIKE operator which is used as follows:

WHERE columnName LIKE %s1%s2%s

Every % sign is matched against zero or more characters.

Note: whereshould not include the string’WHERE’ at the beginning.

valuesA list of values to substitute for? parameters in theWHEREclause

More complex expressions can also be built into where clauses. See the SQL Reference section for full information.

1.4. web.database — SQL database layer 53

The order Parameter You can specify the order in which the results are sorted using theorder parameter. It is
used as follows:

>>> for record in cursor.select(’LastName’, ’Person’, order="’LastName’"):
... print record[’LastName’]
...
’Doe’
’Smith’
>>> for record in cursor.select(’LastName’, ’Person’, order="LastName DESC"):
... print record[’LastName’]
...
’Smith’
’Doe’

Note that by placing the wordDESCafter the column to order by, the order is reversed.

You can place a number of Columns after each other. For exampleorder="LastName DESC DateOfBirth"
could be used to order the results in decending order byLastName and if any results have the same last name, order
them byDateOfBirth .

Alternatively we could have used thecursor.order() method to help instead.

order (order)
Return a parsedORDER BYclause suitable for use in theselect() method of thecursor object.

orderA string containing theORDER BYclause.Note: order should not include the string’ORDER BY’ at
the beginning.

Disabling Execute If you do not want the SQL to actually be executed you can set theexecute parameter of the
select() method toFalse . You can then manually execute it usingcursor.execute() .

>>> sql = cursor.select(columns=[’LastName’, ’DateOfBirth’], tables=[’Person’], execute=False)
>>> sql
’SELECT LastName, DateOfBirth FROM Person’
>>> cursor.execute(sql)
>>> cursor.fetchall()
((’Smith’,’1980-01-01’),(’Doe’,’1981-12-25’))

Using Joins Theselect() allows you to select information from multiple tables. In order to do this you must
specify the tables you wish to select from as a list or tuple and use the fully qualified column name for each table you
want to column you want to select from.

For example:

>>> rows = cursor.select(
... columns = [’table1.LastName’, ’table2.Surname’],
... tables = [’table1’,’table2’],
... where = "table1.Surname = table2.Surname",
... format = ’dict’,
...)
>>> print rows[0][’table2.Surname’]
’Smith’

54 Chapter 1. Web Modules

Inserting Data

The insert method looks like this:

The insert() method of aweb.database cursor looks like this:

insert (table, columns, values, sqlValues,[execute])
Insert values into the columns in table. Eithervaluesor sqlValuescan be specified but not both.

tableThe name of the table to insert into

columnsA sequence of column names in the same order as the values which are going to be inserted into those
columns. Can be a string if only one column is going to have values inserted

valuesA sequence of Python values to be inserted into the columns named in thecolumnsvariable. Can be the
value rather than a list if there is only one value. Ifvaluesis specified then sqlValuesmust be either
an empty sequence or contain a list of all quoted SQL strings for the columns specified in which case
valuescontains the Python values of the SQL strings to be substituted for? parameters in the sqlValues
sequence.

sqlValuesA sequence of quoted SQL strings to be inserted into the columns named in thecolumnsvariable.
Can be the value rather than a list if there is only one value. IfsqlValuesis specified and contains?
parameters for substitution thenvaluescontains the values to be substituted. Otherwisevaluesmust be an
empty sequence.

executeIf False the method returns the SQL string to perform the desired operations. IfTrue the SQL is
executed. If not specified takes the value specified in the cursor which by default isTrue

To insert data into a table using SQL you would use the following command:

INSERT INTO table_name (column1, column2,...)
VALUES (value1, value2,....)

For example consider the table used to demonstrate theselect() method:

+----------+-----------+---------+-------------+
| LastName | FirstName | Address | DateOfBirth |
+----------+-----------+---------+-------------+

The SQL command to insert some information into the table might look like this:

INSERT INTO Person (LastName, FirstName, Address, Age)
VALUES (’Smith’, ’John’, ’5 Friendly Place’, ’1980-01-01’)

To insert the data using aweb.database cursor we would do the following:

cursor.insert(
table = ’Person’,
columns = [’LastName’, ’FirstName’, ’Address’, ’DateOfBirth’],
values = [’Smith’, ’John’, ’5 Friendly Place’, datetime.date(1980,1,1)],

)

Note: We specify the field values as real Python objects. The date was specified as adate object and was automati-
cally converted. Python 2.2 users can also useimport datetime if they have first usedimport web as the web
modules come with a compatibility module.

1.4. web.database — SQL database layer 55

The table now looks like this:

+----------+-----------+------------------+-------------+
| LastName | FirstName | Address | DateOfBirth |
+----------+-----------+------------------+-------------+
| Smith | John | 5 Friendly Place | 1980-01-01 |
+----------+-----------+------------------+-------------+

Updating Data

For example consider the table we created earlier:

table Person
+----------+-----------+------------------+-------------+
| LastName | FirstName | Address | DateOfBirth |
+----------+-----------+------------------+-------------+
| Smith | John | 5 Friendly Place | 1980-01-01 |
+----------+-----------+------------------+-------------+

The SQL command to change every address in the table to ’6 London Road’ is:

UPDATE Person SET Address = ’6 London Road’

To update the data using aweb.database cursor we would do the following:

cursor.update(table=’Person’,columns=[’Address’],values=[’6 London Road’])

The table now looks like this:

+----------+-----------+---------------+-------------+
| LastName | FirstName | Address | DateOfBirth |
+----------+-----------+---------------+-------------+
| Smith | John | 6 London Road | 1980-01-01 |
+----------+-----------+---------------+-------------+

Theupdate() method of aweb.database cursor looks like this:

update (table, columns, values, sqlValues[, where] [, execute])
Update the columns in table with the values. Eithervaluesor sqlValuescan be specified but not both.

tableA string containing the name of the table to update

columnsA sequence of column names in the same order as the values which are going to be updated in those
columns. Can be a string if only one column is going to have values inserted

valuesA sequence of Python values to be inserted into the columns named in thecolumnsvariable. Can be the
value rather than a list if there is only one value. Ifvaluesis specified then sqlValuesmust be either
an empty sequence or contain a list of all quoted SQL strings for the columns specified in which case
valuescontains the Python values of the SQL strings to be substituted for? parameters in thesqlValues

56 Chapter 1. Web Modules

sequence. If there are more values specified invaluesthan sqlValuesthe remaining values are used to
substitute for? parameters inwhere.

sqlValuesA sequence of quoted SQL strings to be inserted into the columns named in thecolumnsvariable.
Can be the value rather than a list if there is only one value. IfsqlValuesis specified and contains?
parameters for substitution thenvaluescontains the values to be substituted. Otherwisevaluesmust be an
empty sequence.

whereThe WHERE clause as aweb.database list as returned bycursor.where() . If whereis a string it
is converted to the correct format.

executeIf False the method returns the SQL string to perform the desired operations. IfTrue the SQL is
executed. If not specified takes the value specified in the cursor which by default isTrue

Deleting Data

For example consider the table we created earlier:

table Person
+----------+-----------+------------------+-------------+
| LastName | FirstName | Address | DateOfBirth |
+----------+-----------+------------------+-------------+
| Smith | John | 5 Friendly Place | 1980-01-01 |
| Owen | Jones | 4 Great Corner | 1990-01-01 |
+----------+-----------+------------------+-------------+

The SQL command to delete every address in the table is:

DELETE FROM Person

To delete all the data using aweb.database cursor we would do the following:

cursor.delete(table="Person")

Note: This does not delete the table, it deletes all the data. To drop the table use thedrop() method.

The table now looks like this:

+----------+-----------+---------+-------------+
| LastName | FirstName | Address | DateOfBirth |
+----------+-----------+---------+-------------+
+----------+-----------+---------+-------------+

To delete only some of the data you need to specify thewhereparameter. For example to delete all people with the
first name’Owen’ we would use the SQL:

DELETE FROM Person WHERE FirstName=’Owen’

Similarly the function to use to execute this SQL command is:

1.4. web.database — SQL database layer 57

cursor.delete(table="Person", where="FirstName=’Owen’")

The table now looks like this:

+----------+-----------+------------------+-------------+
| LastName | FirstName | Address | DateOfBirth |
+----------+-----------+------------------+-------------+
| Smith | John | 5 Friendly Place | 1980-01-01 |
+----------+-----------+------------------+-------------+

Thedelete() method of aweb.database cursor looks like this:

delete (table,[values=[]][, where] [, execute])
Delete records from the table according towhere.

tableA string containing the name of the table to select from or if selecting from multiple tables, a sequence of
table names.

valuesA list of values to substitute for? in theWHEREclause specified bywhere.

whereThe WHERE clause as aweb.database list as returned bycursor.where() . If whereis a string it
is converted to the correct format.

executeIf False the method returns the SQL string to perform the desired operations. IfTrue the SQL is
executed. If not specified takes the value specified in the cursor which by default isTrue

Creating Tables

To create a table in SQL you would use the following command:

CREATE TABLE table_name
(

column_name1 data_type,
column_name2 data_type,
etc...

)

For example:

CREATE TABLE Person
(

LastName varchar,
FirstName varchar,
Address varchar,
Age int

)

To create the table above using aweb.database cursor we would use thecursor.column() helper method:

column (name, type[, required=0][, unique=0][, primaryKey=0][, foreignKey=None][, default=None])
Return a column tuple suitable for use in the columns tuple used in thecreate() method.

Bool , Float , Binary andText columns cannot be used as primary keys or unique columns.Binary and
Text columns cannot have default values.

58 Chapter 1. Web Modules

nameThe name of the field as a string.

typeThe field type. This can take one of the values:’Bool’ , ’String’ , ’Text’ , ’Binary’ , ’Long’ ,
’Integer’ , ’Float’ , ’Date’ , ’Time’ , ’Datetime’

requiredWhether or not the field is required. Setting toTrue means the field cannot haveNULLvalues.

uniqueSet toTrue if the value must be unique. Two fields in the column cannot have the same value unless
that value is NULL

primaryKeyThe field is to be used as a primary key, the field has the same behaviour as being unique and
required but no default value can be set

foreignKeyThe field is to be used as a foreign key, the value should be the name of the table for which this is a
child table.Note: There is no need to specify the column name as tables can only have one primary key.

defaultThe default value for the field to be set to. If not specified the default is NULL

For example:

cursor.create(
table = ’Person’,
columns = [

cursor.column(name=’LastName’, type=’String’),
cursor.column(name=’FirstName’, type=’String’),
cursor.column(name=’Address’, type=’String’),
cursor.column(name=’Age’, type=’Integer’),

],
)

Thecreate() method takes the table name as the first argument and then a sequence column dictionaries returned
from thecursor.column() method as the second argument.

Here is a more complicated example:

cursor.create(
table = ’Person’,
columns = [

cursor.column(name=’LastName’, type=’String’, required=True, unique=True),
cursor.column(name=’FirstName’, type=’String’, default=’Not Specified’),
cursor.column(name=’Address’, type=’String’),
cursor.column(name=’Age’, type=’Integer’),

],
)

In this example we specified that theLastName must always be entered, does not have a default value and must be
unique so that no two people in the database can have the sameLastName . We have also specified thatFirstName
is not required and is not unique. If no value is entered forFirstName the field should be set to the stringNot
Specified .

In mysql This would create the following table:

1.4. web.database — SQL database layer 59

mysql> describe Person;
+-------------+--------------+------+-----+---------------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+--------------+------+-----+---------------+-------+
LastName	varchar(255)		PRI		
FirstName	varchar(255)	YES		Not Specified	
Address	varchar(255)	YES		NULL	
DateOfBirth	date	YES		NULL	
+-------------+--------------+------+-----+---------------+-------+
4 rows in set (0.00 sec)

Thecreate() method of aweb.database cursor looks like this:

create (table, columns[, values=[]] [, execute])
Create table with fields specified by fields. fields is a tuple of field tuples which can be obtained as follows:

columns = [
cursor.column(field options...),
cursor.column(field options...),
cursor.column(field options...),
cursor.column(field options...),

]

tableThe table name as a string.

columnsA sequence of field tuples returned bycursor.column()

valuesA sequence of values to substitute for default values in the columns

executeIf False the method returns the SQL string to perform the desired operations. IfTrue the SQL is
executed. If not specified takes the value specified in the cursor which by default isTrue

Dropping Tables

Warning: Dropping a table in SQL means removing the table from the database and therefore losing all the data it
contained.

To drop (or remove) a table in SQL you would use the following command:

DROP TABLE table_name

For example:

DROP TABLE Person

To drop the table above using aweb.database cursor we would use the following code:

cursor.drop(’Person’)

Thedrop() method of aweb.database cursor looks like this:

drop (table[, execute])
Remove a table

60 Chapter 1. Web Modules

tableA string containing the name of the table to drop.

executeIf False the method returns the SQL string to perform the desired operations. IfTrue the SQL is
executed. If not specified takes the value specified in the cursor which by default isTrue

Functions

Thecursor objects currently support two function methods:max() , min() andcount() as described below.

max(table, column[,where=None][,values=[]])
Returns the highest value of the column.

tableThe name of the table

columnThe name of the column

whereAn optional where clause

valuesValues to substitute for? parameters in the where clause.

min (table, column[,where=None][,values=[]])
Returns the lowest value of the column.

tableThe name of the table

columnThe name of the column

whereAn optional where clause

valuesValues to substitute for? parameters in the where clause.

count (table, column[,where=None][,values=[]])
Count the number of rows in the table matchingwhere. If whereis not specified, count all rows.

tableThe name of the table

columnThe name of the column

whereAn optional where clause

valuesValues to substitute for? parameters in the where clause.

For example consider the table below:

Numbers
+--------+
| Number |
+--------+
| 1 |
+--------+
| 2 |
+--------+
| 3 |
+--------+

>>> cursor.max(table=’Numbers’, column=’Number’)
3
>>> cursor.min(table=’Numbers’, column=’Number’)
1
>>> cursor.max(table=’Numbers’, column=’Number’, where="Number<?", values=[3])
2

1.4. web.database — SQL database layer 61

1.4.14 Supported Databases

The currently supported databases include:

SQLite Stores database in local text files. Full support.

SnakeSQL Pure Python SQL database. Used in the PythonWeb examples. Full support.

MySQL Supported through the MySQLdb module which is included with the web modules. Doesn’t support trans-
actions or foreign key constraint checks.

Other databases with varying levels of support:

PostgreSQL Support is planned but the authour has no access to a Postgres database so cannot yet write the wrapper.

ODBC Partially implemented, not yet available. All ODBC databases including MS Access are supported through the
mx.ODBCdriver available fromhttp://www.egenix.com/. You will first need to indtall themx.BASE package.

MySQL

Warning: TheMySQLdbmodule on which the MySQL driver is based automatically commits any changes you have
made to the database when the script exits, regardless of whether you have explicitly committed the changes in the
code. This is different to the behaviour of the other databases and may catch you out so please be aware it is going on.
(If anyone knows how to fix this please, please let the authour know!)

Also, MySQL doesn’t explicitly check the foreign key constraints and so won’t let you know you try an operation
which would break those constriants.

SQLite

The SQLite implemenation appears robust and fully supports the entire specification.

Warning: TheDate , Time andDateTime fields all use SQLiteText fields and not the correspondingDate fields
so if you have an existing pysqlite database these fields my not be compatible. This may be changed in future releases
of the modules.

ODBC

Implementation not finished. I’m having problems finding an SQL syntax guide to ODBC so that I can implement
correct table create statements. Any ideas would be appreciated.

1.4.15 Example Code

Below is a script to test the database layer. It demonstrates the use of some of the commands:

#!/usr/bin/env python

import sys; sys.path.append(’../../../’) # show python where the modules are

import web.database
connection = web.database.connect(

adapter="snakesql",
database="database",

62 Chapter 1. Web Modules

autoCreate = 1,
)
cursor = connection.cursor()

import datetime

Crete a table using the DB-API 2.0 interface and inset some information
cursor.execute(’CREATE TABLE test(columnDate Date, columnString String)’)
cursor.execute(

"INSERT INTO test (columnDate, columnString) VALUES (?, ’This i\\s a str’’ing with some awkward quoting’)",
datetime.date(2005,01,27)

)
Retrieve the information
cursor.execute("SELECT * from test WHERE columnDate = ’2005-01-27’")
print cursor.fetchall(format=’dict’)

Update the row using the abstraction interface and retrieve the information
cursor.update(

table = ’test’,
columns = [’columnString’],
values = ["James’s New String conta\\\\ining an apostrophe and awkward quoting"],

)
print cursor.select(columns=’*’, tables=[’test’])

connection.close() # Close the connection without saving changes

1.4.16 API Reference

Warning: Developers using theweb.database API should always specify values in methods by name and not
rely on the position of parameters as the API may change in future versions.

Module Interface

Access to the database is made available through connection objects. Theweb.database module provides the
following constructor for these:

connect (adapter,[database,][user,][password,][host,][port,][socket,][**params])
Constructor for creating a connection to a database. Returns aConnection object. Not all databases will use
all the parameters, but databases should use the parameters specified and not abbreviated versions. Any more
complex parameters are passed directly to the driver’sconnect() method.

adapterThe type of database to connect to. Can currently be’MySQL’ , ’PySQLite’ or ’web.database
’ but it is hoped that most database drivers will eventually be supported.

databaseThe database name to connect to.

userThe username to connect with.

passwordThe password to use.

prependA string to be transparantly used in front of all database tables.

hostThe host to connect to if the database is running on a remote server.

portThe port to connect to if the database is running on a remote server.

socketThe socket to connect to if the database is running locally and requires a socket.

**paramsAny other parameters to be passed to the driver

1.4. web.database — SQL database layer 63

web.database implementers will usually override the methodmakeConnection() to provide this functionality
as is clear from the source code.

These module globals are also be defined:

version String constant stating the supported DB API level.

version info A tuple in the same format assys.version info for example something like
(2,4,0,rc1,’beta’)

Connection Objects

Connection objects respond to the following methods as defined in the DB-API 2.0close() , commit() and
rollback() . Thecommit() androllback() methods should work as specified in the DB-API 2.0. Even if
the database engine doesn’t directly support transactions, these facilities should be emulated.

Connection objects also have acursor() method.

cursor ([execute=True], [format=’tuple’], [convert=True], [mode=’portable’])
The default values which the cursor abstraction methods will take for the values ofexecute, formatandconvert
can be set using this method.

formatThis can be’tuple’ to return the results as a tuples,’text’ to return as text wrapped to 80 characters
for display in a terminal,’dict’ to return the results as dictionaries or’object’ to return the results
as result objects to be treated as dictionaries, tuples or via attribute access.

convertConvert the results to standard formats (should beTrue for most users)

executeUsed in the cursor SQL methods. IfTrue then rather than returning an SQL string, the methods execute
the results

modeThe default mode for theexecute() method. Can be’portable’ to use the SQL abstraction methods
or ’direct’ to send the SQL directly to the underlying cursor.

Connection objects also have the following attributes:

tables A dictionary ofTable objects with their names as the keys

converters A dictionary of field converter objects for all supported database types.

baseConnection The DB-API 2.0Connection object

Cursor Objects

close ()
Close the cursor now (rather than wheneverdel is called). The cursor will be unusable from this point
forward; an Error (or subclass) exception will be raised if any operation is attempted with the cursor.

export (tables,[includeCreate=True])
Export the tables specified bytablesas portable SQL including statements to create the tables ifincludeCreate
is True .

Importing the SQL is then simply a matter of executing the SQL. Here is an example:

backup = cursor.export(tables=[’testTable’])
cursor.drop(table=’testTable’)
for sql in backup.split(’\n’):

cursor.execute(sql, mode=’portable’)

ThetestTable should be exactly the same as it was before the code was executed.

64 Chapter 1. Web Modules

Cursor objects have the following attributes:

connection
This read-only attribute return a reference to the Connection object on which the cursor was created. The
attribute simplifies writing polymorph code in multi-connection environments.

info
A list of Column objects for in the order of the fields from the lastSELECTor None if the last SQL operation
was not aSELECT. Column objects contain all the information about a particular field and provide conversion
methods for that field.

baseCursor
The DB-API 2.0Cursor object

sql
A list of tuples of parameters passed to theexecute() methods

Execute SQL web.database compliant databases support qmark style parameters for substitutions as follows:

cursor.execute(’SELECT * FROM Test WHERE columnName=?’,[’textEntry’])

execute (sql[, parameters][,mode])
Prepare and execute a database operation. Parameters are provided as a sequence and will be bound to?
variables in the operation.modecan be’direct’ to pass the parameters to the underlying DB-API 2.0 cursor
or ’portable’ to execute the code in a portable fashion.

executemany (sql, manyParameters[,mode])
Similar toexecute() but the operation is executed for each sequence inmanyParameters.

Fetch Results All these methods take the parametersformatandconvert. If they are not specified the values set in
thecursor() method of theConnection object is used.

fetchone ([format],[convert])
Fetch the next row of a query result set, returning a single sequence, or None when no more data is available.
[6]

An Error (or subclass) exception is raised if the previous call to executeXXX() did not produce any result set or
no call was issued yet.

formatThe format of the results returned. Can be’dict’ to return them as a tuple of dictionary objects,
’tuple’ to return them as a tuple of tuples,’object’ to return them as a tuple ofdtuple objects
which can be treated as a tuple or a dictionary (or via attribute access for the majority of column names) or
’text’ to return tables designed to be displayed in a terminal 80 characters wide. If not specified takes
the value specified in the cursor which by default is’tuple’

convertCan beTrue to convert the results to the correct types,False to leave the results as they are returned
from the base cursor. If not specified takes the value specified in the cursor which by default isTrue

fetchall ([format],[convert])
Fetch all (remaining) rows of a query result, returning them as a sequence of sequences (e.g. a list of tuples).

An Error (or subclass) exception is raised if the previous call to anexecute() method did not produce any
result set or no call was issued yet.

The valuesformatandconvertare as specified infetchone()

1.4. web.database — SQL database layer 65

Cursor Abstraction Methods It is assumed that ifexecuteis True in the following methods then you wish to be
executing the code in portable mode, otherwise it is unlikely you would be using abstraction methods.

If you did wish to execute code in direct mode (through the DB-API 2.0 cursor) you could do the following:

sql = cusror.select(columns=[’*’], tables=[’table’], execute=False)
cursor.execute(sql, mode=’direct’)

Warning: It is possible to get the cursor abstraction methods to perform operations they were not designed for. For
example, incursor.select() you could specify one of the columns as’AVG(columnName)’ . This would
produce an SQL statement which would return the mean value of the columncolumnName on some databases but
certainly not on all and therefore breaks the specification which states that columns should be a list of column names.
To ensure database portability please stick to the published API.

select (tables, columns, [values=[],][where=None,][order=None,][execute=None,][fetch=None,
][**params])

Build an SQL string according to the options specified and optionally execute the SQL and return the results in
the format specified. No error checking on field names if the SQL string is only being built. Strict error checking
is only performed when executing the code.

tablesA string containing the name of the table to select from or if selecting from multiple tables, a sequence of
table names.

columnsA sequence of column names to select. Can be a string if only one column is being selected. If selecting
from multiple tables, all column names should be in the form’tableName.columnName’

valuesA list of values to substitute for? in theWHEREclause specified bywhere.

whereThe WHERE clause as aweb.database list as returned bycursor.where() . If whereis a string it
is converted to the correct format.

orderThe ORDER BY clause as aweb.database list as returned bycursor.order() . If order is a string
it is converted to the correct format.

executeIf False the method returns the SQL string needed to perform the desired operations. IfTrue the SQL
is executed and the results converted and returned in the appropriate form. If not specified takes the value
specified in the cursor which by default isTrue

fetchWhether or not to fetch the results. IfTrue andexecuteis not specifiedexecuteis set toTrue . If True
andexecuteFalse an error is raised.

**paramsThe parameters to be passed to thefetchall() method iffetchis True

insert (table, columns, values,sqlValues,[execute])
Insert values into the columns in table. Eithervaluesor sqlValuescan be specified but not both.

tableThe name of the table to insert into

columnsA sequence of column names in the same order as the values which are going to be inserted into those
columns. Can be a string if only one column is going to have values inserted

valuesA sequence of Python values to be inserted into the columns named in thecolumnsvariable. Can be the
value rather than a list if there is only one value. Ifvaluesis specified then sqlValuesmust be either
an empty sequence or contain a list of all quoted SQL strings for the columns specified in which case
valuescontains the Python values of the SQL strings to be substituted for? parameters in thesqlValues
sequence.

sqlValuesA sequence of quoted SQL strings to be inserted into the columns named in thecolumnsvariable.
Can be the value rather than a list if there is only one value. IfsqlValuesis specified and contains?
parameters for substitution thenvaluescontains the values to be substituted. Otherwisevaluesmust be an
empty sequence.

66 Chapter 1. Web Modules

executeIf False the method returns the SQL string to perform the desired operations. IfTrue the SQL is
executed. If not specified takes the value specified in the cursor which by default isTrue

insertMany (table, columns, values,sqlValues,[execute])
Same asinsert() except thatvaluesor sqlValuescontain a sequence of sequences of values to be inserted.

update (table, columns, values,sqlValues[, where] [, execute])
Update the columns in table with the values. Eithervaluesor sqlValuescan be specified but not both.

tableA string containing the name of the table to update

columnsA sequence of column names in the same order as the values which are going to be updated in those
columns. Can be a string if only one column is going to have values inserted

valuesA sequence of Python values to be inserted into the columns named in thecolumnsvariable. Can be the
value rather than a list if there is only one value. Ifvaluesis specified then sqlValuesmust be either
an empty sequence or contain a list of all quoted SQL strings for the columns specified in which case
valuescontains the Python values of the SQL strings to be substituted for? parameters in thesqlValues
sequence. If there are more values specified invaluesthan sqlValuesthe remaining values are used to
substitute for? parameters inwhere.

sqlValuesA sequence of quoted SQL strings to be inserted into the columns named in thecolumnsvariable.
Can be the value rather than a list if there is only one value. IfsqlValuesis specified and contains?
parameters for substitution thenvaluescontains the values to be substituted. Otherwisevaluesmust be an
empty sequence.

whereThe WHERE clause as aweb.database list as returned bycursor.where() . If whereis a string it
is converted to the correct format.

executeIf False the method returns the SQL string to perform the desired operations. IfTrue the SQL is
executed. If not specified takes the value specified in the cursor which by default isTrue

delete (table,[values=[]][, where] [, execute])
Delete records from the table according towhere.

tableA string containing the name of the table to select from or if selecting from multiple tables, a sequence of
table names.

valuesA list of values to substitute for? in theWHEREclause specified bywhere.

whereThe WHERE clause as aweb.database list as returned bycursor.where() . If whereis a string it
is converted to the correct format.

executeIf False the method returns the SQL string to perform the desired operations. IfTrue the SQL is
executed. If not specified takes the value specified in the cursor which by default isTrue

create (table, columns[, values=[]] [, execute])
Create table with fields specified by fields. fields is a tuple of field tuples which can be obtained as follows:

columns = [
cursor.column(field options...),
cursor.column(field options...),
cursor.column(field options...),
cursor.column(field options...),

]

tableThe table name as a string.

columnsA sequence of field tuples returned bycursor.column()

valuesA sequence of values to substitute for default values in the columns

executeIf False the method returns the SQL string to perform the desired operations. IfTrue the SQL is
executed. If not specified takes the value specified in the cursor which by default isTrue

1.4. web.database — SQL database layer 67

drop (table[, execute])
Remove a table

tableA string containing the name of the table to drop.

executeIf False the method returns the SQL string to perform the desired operations. IfTrue the SQL is
executed. If not specified takes the value specified in the cursor which by default isTrue

function (function, table, column,[,where=None][, values=[]])
Returns the result of applying the specified function to the field

functionThe function to be applied, can be’max’ , ’min’ , ’sum’ or ’count’

tableThe name of the table

columnThe name of the field

whereAn optional where clause

valuesA list of values to substitute for? parameters in theWHEREclause

max(table, column[,where=None][,values=[]])
Returns the highest value of the column.

tableThe name of the table

columnThe name of the column

whereAn optional where clause

valuesValues to substitute for? parameters in the where clause.

min (table, column[,where=None][,values=[]])
Returns the lowest value of the column.

tableThe name of the table

columnThe name of the column

whereAn optional where clause

valuesValues to substitute for? parameters in the where clause.

count (table, column[,where=None][,values=[]])
Count the number of rows in the table matchingwhere. If whereis not specified, count all rows.

tableThe name of the table

columnThe name of the column

whereAn optional where clause

valuesValues to substitute for? parameters in the where clause.

Helper Methods Helper methods build the data structures which should be passed to theCursor abstraction
methods.

column (name, type[, required=0][, unique=0][, primaryKey=0][, foreignKey=None][, default=None])
Return a column tuple suitable for use in the columns tuple used in thecreate() method.

Bool , Float , Binary andText columns cannot be used as primary keys or unique columns.Binary and
Text columns cannot have default values.

nameThe name of the field as a string.

typeThe field type. This can take one of the values:’Bool’ , ’String’ , ’Text’ , ’Binary’ , ’Long’ ,
’Integer’ , ’Float’ , ’Date’ , ’Time’ , ’Datetime’

requiredWhether or not the field is required. Setting toTrue means the field cannot haveNULLvalues.

68 Chapter 1. Web Modules

uniqueSet toTrue if the value must be unique. Two fields in the column cannot have the same value unless
that value is NULL

primaryKeyThe field is to be used as a primary key, the field has the same behaviour as being unique and
required but no default value can be set

foreignKeyThe field is to be used as a foreign key, the value should be the name of the table for which this is a
child table.Note: There is no need to specify the column name as tables can only have one primary key.

defaultThe default value for the field to be set to. If not specified the default is NULL

where (where,[values=[]])
Return a parsedWHEREclause suitable for use in theselect() , update() anddelete() methods of the
cursor object.

whereA string containing theWHEREclause. Can include theLIKE operator which is used as follows:

WHERE columnName LIKE %s1%s2%s

Every % sign is matched against zero or more characters.
Note: whereshould not include the string’WHERE’ at the beginning.

valuesA list of values to substitute for? parameters in theWHEREclause

order (order)
Return a parsedORDER BYclause suitable for use in theselect() method of thecursor object.

orderA string containing theORDER BYclause.Note: order should not include the string’ORDER BY’ at
the beginning.

Utility Methods
export ()

Export the database as a series of SQL strings which can be executed to completely recreate precicely the
original database structure. This is useful for database backups or for moving data from one database to another.

Warning: This is a new feature and has not had a lot of testing.

Table Objects

Table objects can be accessed through thetables attribute of theConnection object like this:

>>> print connection.tables[’tableName’].name
tableName
>>> print connection.tables[’tableName’][’columnName’].name
columnName

classTable
Table objects store all the meta data there is to know about an SQL table. They are created by the
web.database module and should not be created manually. They are simply structures to hold table in-
formation. The values should not be changed.

Table objects have the following attributes:

name
The name of the table correctly capitalised

columns
A list of Column objects describing each column of the table

1.4. web.database — SQL database layer 69

primaryKey
The name of the primary key column of the table orNone if no primary key is specified

parentTables
A list of the names of any tables for which the table has foreign key fields

childTables
A list of the names of any tables for which the table is a parent table

and the following methods:

has key (columnName)

columnExists (columnName)
ReturnsTrue if columnNameis the name of a column in the table

column (columnName)

getitem (columnName)
Returns the column object forcolumnName

Table objects can also contain any other useful methods which the module implementer feels are appropriate.

Column Objects

Column objects store all the information there is to know about a particular column.Column objects can be accessed
through theconnection.tables dictionary which contains all columns or throughcursor.info which con-
tains a tuple corresponding to theColumn objects selected after aSELECTstatement has been executed in portable
mode (orNone after any other SQL operation).

>>> cursor.select(columns=[’columnName’], tables=[’tableName’], execute=True)
>>> print cursor.info[0].name
columnName
>>> print cursor.info[0].table
tableName

classColumn name
The name of the column

type
The capitalised string representing the column type

baseType
The capitalised string representing the column type of the base type

table
The table of which the column is a part

required
Can beTrue or False depending on whether or not the column value is required (i.e. cannot be NULL)

unique
True if the field should be unique,False otherwise

key
True if the field is a primary key,False otherwise

default
The default value of the field

converter
A reference to theConverter object for the field type

position
The position of the field in the tuple returned bySELECT * FROM table

70 Chapter 1. Web Modules

Converter Objects

Converter objects contain methods to convert values between SQL and Python objects and to convert values re-
turned by the database driver into the correct Python type.Converter objects are accessed through theconverter
attribute of the correspondingColumn object.

Example: convert a list of values selected from a database to their SQL encoded equivalents

>>> cursor.select(columns=[’table1.columnOne’, ’table2.column2’], tables=[’table1’, ’table2’], execute=True)
>>> results = cursor.fetchall()
>>> record = results[0]
>>> newRecord = []
>>> for i in range(len(record)):
... newRecord.append(cursor.info[i].converter.valueToSQL(record[i]))

classConverter valueToSQL (value)
Convert a Python object to an SQL string

sqlToValue (value)
Convert the an SQL string to a Python object

databaseToValue (value)
Convert the value stored in the database to a Python object

valueToDatabase (value)
Convert a Python object to the format needed to store it in the database

type
A string representing the column type

sqlQuotes
True if the SQL representation should be quoted,False otherwise

Converter objects are also available as a dictionary with column types as the keys as theconverters attribute
of theConnection object.

1.4.17 Developer’s Guide

Implementing the Classes

Virtually all the functionality of the API has been implemented as base classes from which module implementers
simply need to derive their own classes, over-riding methods to suit their particular database syntax as necessary.

In particular this requires writing custom converter methods to ensure that the database returns the correct values,
overriding themakeConnection() method to convertconnect() method parameters to the appropriate form
for the driver, and overriding the cursor abstraction methods so that they build the correct SQL strings from the
parameters.

web.database implementation comes with basic implementations for PySQLite,web.database and a partial
implementation for MySQLdb (transaction support isn’t implemented). These can all be used as examples.

If a particular database engine does not natively support part of the API it should be emulated in the derived classes
even if it is difficult or slow to do so.

Creating the Dictionary

The implementation should contain a dictionary nameddriver in the sub-package of the main module namedpdbc .
So for example,web.database will have a moduleweb.database .pdbc which will contain a dictionary

1.4. web.database — SQL database layer 71

nameddriver similar to the following:

driver = {
’converters’:{

’String’: base.BaseStringConverter(),
’Text’: base.BaseTextConverter(),
’Binary’: base.BaseBinaryConverter(),
’Bool’: base.BaseBoolConverter(),
’Integer’: base.BaseIntegerConverter(),
’Long’: base.BaseLongConverter(),
’Float’: base.BaseFloatConverter(),
’Date’: base.BaseDateConverter(),
’Datetime’: base.BaseDatetimeConverter(),
’Time’: base.BaseTimeConverter(),

}
’columnClass’:base.BaseColumn,
’tableClass’:base.BaseTable,
’cursorClass’:Cursor,
’connectionClass’:Connection,

}

WhereConnection andCursor are classes derived frombase.Connection andbase.Cursor respectively.

1.4.18 Tools Under Development

This section describes certain tools based onweb.database which are currently under development.

Web Based Admin

It also becomes possible to define HTML fields for each data type (and therefore each derivative data type) so that
web-based editing of aweb.database compliant database becomes very simple.

1.4.19 Future Additions

This section is just a list of currently excluded features which might be useful in the next version. They are in the order
of importance:

• Autoincrement Integer fields

• Support forUPDATE SET TOTAL = TOTAL + 100syntax

This is a list of things currently not included in the module but which may be of use later on:

• Make sure max and min work in all cursors for all field types

• Check table aliases actually work!

• Caching of all values to save on SQL calls

• Checking type conversions for ODBC and also the mx.DateTime issues

• Fixing and testing ofalter()

72 Chapter 1. Web Modules

• Table copying code

• Executemany support

1.5 web.database.object — An object relation mapper built on the
web.database and web.form modules

The web.database.object module is an object-relational mapper. It allows you to simply define complex
database structures in Python code and then create the necessary tables automatically. It then allows you to ma-
nipulate the Python objects you have defined to transparently manipulate the underlying database including the facility
to use multiple joins without knowing any SQL.

Furthermore the table column classes are derived fromweb.form.field objects which means you can
transparently create HTML interfaces to edit the data structures through a web browser. This makes
web.database.object module ideal as a middle layer for writing data-driver websites although it has broader
uses as well.

A database object can in theory have any storage driver (text, XML, SQL Datbase, DBM) although currently only
a driver for theweb.database module has been written. This means that any storage system with a driver for
web.database can be used withweb.database.object . This currently includes MySQL, ODBC, SQLite
and, to an extent, Gadlfy.

1.5.1 Introduction

Requirements

To use web.database.object you need Python 2.2 or above and the Web Modules of which
web.database.object is a part and an SQL database supported by theweb.database module and its as-
sociated Python driver. If you use MuSQL, a MySQL database is needed, alternatively use an ODBC database such
as MS Access. Theweb.database driver is included with the Python Web Modules but you will need to download
and install the ODBC driver from thehttp://www.eGenix.com site yourself as it comes with a non open source licence.

Compared To Other Database Wrappers

There are several object-relational mappers for Python and a series of basic database wrappers similar to
web.database . The authour cannot comment deeply on these.

web.database.object is most similar to SQLObject available fromhttp://www.sqlobject.org in that it creates
objects that feel similar to normal Python objects and can be accessed and manipulated in a familiar way.

Modules like SQLObject andweb.database.object differ from modules such as PyDO or theweb.database
module which simply provide more Python-like ways of executing SQL queries and then package up the database
returns into more useable forms such as dictionaries. Theweb.database.object completely removes any need to
know any SQL. You just manipulate the objects themselves and the rest is done for you. This makes SQL programming
extremely simple and still gives you full control over the information stored in the database.

What separatesweb.database.object from some other software is the strong typing of the data. If you are
accessing the property of a Date field the object will be adatetime.Date object. If you are setting an Email field,
only strings in the format of an email address will be allowed. The module also direct support for one-to-many and
many-to-many mappings which means you can build complex data structures.

Because the software interfaces the database through aweb.database cursor (in principle it could interface to
other drivers as well) the code written will be database independant and run on any database supported by the
web.database module.

1.5. web.database.object — An object relation mapper built on the web.database and web.form
modules

73

web.database.object uses classes derived fromTable , Database andweb.form.field classes to facil-
itate this integration. Some ORMs use code generation to create an interface, expressing the schema in a CSV or XML
file (for example, MiddleKit, part of Webware). By using normal Python objects you are able to comfortably define
your database in the Python source code. No code generation, no weird tools, no compilation step.

What truly separatesweb.database.object from any other ORM in any language (to the authour’s knowledge -
correct me please if I am wrong) is that on top of all the features mentioned above, the columns used to store the SQL
data are also instances ofweb.form.field.typed and the tables have the ability to generateweb.form Form
objects. This means it is possible to create HTML interfaces to edit the database data automatically and in such a way
that the user can only enter valid data otherwise the user will be asked to make corrections. This functionality makes
building complex web databases much simpler.

1.5.2 Introductory Example

Below is about the simplest possible example where a database object namedMyDatabase is created. The database
object is connected to an SQLite database namedobject-simple.db but could equally well be a MySQL database
or ODBC supported database like MS Access.

import web.database, web.database.object

connection = web.database.connect(type="sqlite",database="object-simple.db")
cursor = connection.cursor()

person = web.database.object.Table("Person")
person.addColumn(web.database.object.String(name="firstName"))
person.addColumn(web.database.object.String(name="surname"))

database = web.database.object.Database()
database.addTable(person)
database.init(cursor)

This first lines import the modules we need and make theweb.database connection. We could have made any
database connection supported by theweb.database module. Below are some other examples for the 3rd line.

connection = web.database.connect(type="odbc", database="AccessDatabase")
connection = web.database.connect(type="mysql", host="pythonweb.org", user="james", password="hello")

The database will contain one table namedPerson . ThePerson table has two columns, both of which are String
columns. One is namedfirstName and the othersurname . All web.database.object column objects must
take anameparameter and this is used as the column name.

Once we have finished defining our table we create aweb.database.object.Database() which will
be the object we use to manipulate the database. We add out table definition to the database definition us-
ing database.addTable(person) and then initilise the database to associate it with the live databaseusing
database.init(cursor) .

Warning: Once a database object is initialised you cannot add any more tables or modify the database’s structure in
any way.

Now we have defined and initialised out database we can start using it. If the table does not already exist in the live
database we need to create it as follows:

74 Chapter 1. Web Modules

if not database.tablesExist():
database.createTables()
print "Created Table"

This command creates every table the database needs (in our case just the one). If you decide to change the structure
of the tables at a later date after you have created the tables in the live database you will need to remove them all using
database.dropTables() and recreate them from scratch. This means you would loose all the information so it
is important to decide on the correct structure before creating the tables.

All information in the database can be accessed through a dictionary-like interface. For example the database object
acts like a dictionary of tables and each table acts like a dictionary of rows. Each row acts like a dictionary of field
values.

Now we have created the table we are free to add, edit and remove data. Following on from the previous example.

>>> john = database[’Person’].insert(firstName="John", surname="Smith")
>>> print john[’firstName’]
John
>>> print john[’surname’]
Smith
>>> john[’surname’] = ’Doe’
>>> print john[’surname’]
Doe
>>> print john[’rowid’]
1

In this way you can create and modify the table information. Take note of the line>>> john[’rowid’] . Each
new object (which is equivalent to a row in the table) is given a unique integer number named therowid by which it
can be identified.

We can use this rowid to retrieve John Smith’s information from the database at a later time. There are two ways to
retrieve rows from the table using the rowid:

>>> row1 = database[’Person’][1]
>>> row2 = database[’Person’].row(1)
>>> print row1 == row2 == john
1

Once you have made changes to the database you will need to commit your changes usingconnection.commit()
otherwise your changes may be lost. By the end of this session our database table looks like this:

1.5. web.database.object — An object relation mapper built on the web.database and web.form
modules

75

Tables in the ’test’ database
+----------------+
| Tables_in_test |
+----------------+
| Person |
+----------------+

The Person table
+-------+-----------+---------+
| rowid | firstName | surname |
+-------+-----------+---------+
| 1 | John | Doe |
+-------+-----------+---------+

Thats about all there is to it!

Full Code Listing

Here is a complete code listing so that you can experiment:

#!/usr/bin/env python

import sys; sys.path.append(’../../../’) # show python where the modules are

import web.database, web.database.object
connection = web.database.connect(

adapter="snakesql",
database="database-object-simple",
autoCreate = 1,

)
cursor = connection.cursor()

person = web.database.object.Table("Person")
person.addColumn(web.database.object.String(name="firstName"))
person.addColumn(web.database.object.String(name="surname"))

database = web.database.object.Database()
database.addTable(person)
database.init(cursor)

if not database.tablesExist():
database.createTables()
print "Created Table"

john = database[’Person’].insert(firstName="John", surname="Smith")
print john[’firstName’]
print john[’surname’]

john[’surname’] = ’Doe’
print john[’surname’]

print john[’rowid’]

row1 = database[’Person’][1]
row2 = database[’Person’].row(1)
print row1 == row2 == john

76 Chapter 1. Web Modules

connection.close() # Close the connection without saving changes

The output is:

Created Table
John
Smith
Doe
1
1

Note: If you run the code more than once you will be adding lots of John Smiths to the test database and so the rowid
value will be one larger each time you run the code. After the first time you run the code the lineCreated Table
will not be output since the table will already be created.

Using Alternative Keys

In the example above we could access John Smith’s information as follows:

>>> row1 = database[’Person’][1]
>>> row2 = database[’Person’].row(1)

We could have defined thesurname column differently and added it like this instead:

person.addColumn(web.database.object.String(name="surname", unique=True, required=True, key=True))

This defines the surname as a unique, required field.uniquemeans that there cannot be two people with the same
surname in the database. If you try to add two people with the same name an Exception will be raised.requiredmeans
that you must always enter a surname, although in out example, becauserequired is not specified for the firstName
column, you would not have to enter a firstName.

SpecifyingkeyasTrue for the surname tells the table that you want to be able to retrieve data from the database based
on the surname column rather than the rowid. We can now try the following:

>>> row1 = database[’Person’][’Smith’]
>>> row2 = database[’Person’].row(1)
>>> print row1 == row2
True

You can still access the information by rowid using therow() method.

Any column can be specified as a key but there can only be one column in each table specified as a key. Any column
specified as a key must also be specified as unique and required.

Available Columns

There are a number of column types available for use with theweb.database.object module. These in-
clude: String , StringSelect , Text , Bool , Integer , IntegerSelect , Float , FloatSelect , Date ,
DateSelect , Time , TimeSelect , DateTime , DateTimeSelect , Email andURL

1.5. web.database.object — An object relation mapper built on the web.database and web.form
modules

77

Eachweb.database.object column is derived for the correspondingweb.form.field field which means
it behaves in exactly the same way. You can see the available options in theweb.form.field documenta-
tion. Eachweb.database.object column has two more parameters in addition to those of its corresponding
web.form.field . These areuniqueandkeydescribed in the previous example.

1.5.3 One-To-Many Mappings

One of the features that distinguishes this module from many others is its ability to deal with more complex datastruc-
tures than just simple tables. As an example of a one-to-many mapping we will consider an address book.

In our address book each person can have many addresses but each address is only associated with one person. The
data structure looks like this:

+-- Address 1
Person 1 ---|

+-- Address 2

To create a database to describe this struture we need two tables, a Person table and an Address table.

import web.database, web.database.object
connection = web.database.connect(type="sqlite", database="object-multiple.db")
cursor = connection.cursor()

person = web.database.object.Table("Person")
person.addColumn(web.database.object.String(name="firstName"))
person.addColumn(web.database.object.String(name="surname"))
person.addMultiple(name="addresses", foreignTable="Address")

address = web.database.object.Table("Address")
address.addColumn(web.database.object.String(name="firstLine"))
address.addColumn(web.database.object.String(name="postcode"))
address.addSingle(name="person", foreignTable="Person")

database = web.database.object.Database()
database.addTable(person)
database.addTable(address)
database.init(cursor)

As in the introductory example we use theaddColumn() method to addColumn objects to the Address table. This
time however we also use theaddSingle() method to add a column namedperson to the table. We have also
usedaddMultiple() method to add a multiple join calledaddresses from the Person foreign table to the Person
table. The final change is that we have added theAddress table to the database.

Note: We in theaddSingle() andaddMultiple() methods we refer to theforeignTable by the string
representing its name and not the object itself.

When we access a person’saddresses key, we will get back a list of all the Address objects associated with that
person. Continuing the example above:

78 Chapter 1. Web Modules

>>> john = database[’Person’].insert(firstName=’John’, surname=’Smith’)
>>> print john[’surname’]
Smith
>>> print john[’addresses’]
{}
>>> database[’Address’].insert(person=john, firstLine=’12 Friendly Place’, postcode=’OX4 1AB’)
>>> database[’Address’].insert(person=john, firstLine=’3a Crazy Gardens’, postcode=’OX1 2ZX’)
>>> for address in john[’addresses’].values:
... print address[’firstLine’]
...
12 Friendly Place
3a Crazy Gardens

Note how we specify the person to add the address to usingperson=john . We could alternatively have specified the
rowid of the person to add the address to. Just like the database, tables and rows, the value returned by john[’addresses’]
behaves like a dictionary. In this example we use thevalues() method to return a list of theRowobjects.

It should be noted that you cannot set the values of multiple columns like the’addresses’ column directly. Instead
you should set the values of each object induvidually.

>>> john[’addresses’] = something # XXX Doesn’t work!

Again you muct usecursor.commit() to commit the changes to the database.

Just for interest here is how the tables look in the live database. You can see that the person column in the Address
table contains the rowid in the Person table of the person to associate the address with.

Tables in the ’test’ database
+----------------+
| Tables_in_test |
+----------------+
| Address |
| Person |
+----------------+

The Person table
+-------+-----------+---------+
| rowid | firstName | surname |
+-------+-----------+---------+
| 1 | John | Smith |
+-------+-----------+---------+

The Address table
+-------+-----------------------+----------+--------+
| rowid | firstLine | postcode | person |
+-------+-----------------------+----------+--------+
| 1 | 12 Friendly Place | OX4 1AB | 1 |
+-------+-----------------------+----------+--------+
| 2 | 3a Crazy Gardens | OX1 2ZX | 1 |
+-------+-----------------------+----------+--------+

1.5. web.database.object — An object relation mapper built on the web.database and web.form
modules

79

Full Code Listing

Here is a complete code listing so that you can experiment:

#!/usr/bin/env python

import sys; sys.path.append(’../../../’) # show python where the modules are

import web.database, web.database.object
connection = web.database.connect(

adapter="snakesql",
database="database-object-multiple",
autoCreate = 1,

)
cursor = connection.cursor()

person = web.database.object.Table("Person")
person.addColumn(web.database.object.String(name="firstName"))
person.addColumn(web.database.object.String(name="surname"))
person.addMultiple(name="addresses", foreignTable="Address")

address = web.database.object.Table("Address")
address.addColumn(web.database.object.String(name="firstLine"))
address.addColumn(web.database.object.String(name="postcode"))
address.addSingle(name="person", foreignTable="Person")

database = web.database.object.Database()
database.addTable(person)
database.addTable(address)
database.init(cursor)

if not database.tablesExist():
database.createTables()
print "Created Table"

else:
raise Exception(’Tables not created’)

john = database[’Person’].insert(firstName=’John’, surname=’Smith’)
print john[’surname’]
print john[’addresses’]

database[’Address’].insert(person=john, firstLine=’12 Friendly Place’, postcode=’OX4 1AB’)
database[’Address’].insert(person=john, firstLine=’3a Crazy Gardens’, postcode=’OX1 2ZX’)

for address in john[’addresses’].values():
print address[’firstLine’]

connection.close() # Close the connection without saving changes

The output is:

Created Table
Smith
{}
12 Friendly Place
3a Crazy Gardens

You will need to delete the database file ‘object-multiple.db’ each time you run the cose so that it can be recreated each

80 Chapter 1. Web Modules

time.

1.5.4 Many-To-Many Mappings

In a real life more than one person might live at the same address and each person might have multiple addresses. The
relationship is actually a many-to-many mapping. Have a look at the code below:

import web.database, web.database.object
connection = web.database.connect(type="sqlite", database="object-multiple.db")
cursor = connection.cursor()

person = web.database.object.Table("Person")
person.addColumn(web.database.object.String(name="firstName"))
person.addColumn(web.database.object.String(name="surname"))
person.addRelated(name="addresses", foreignTable="Address")

address = web.database.object.Table("Address")
address.addColumn(web.database.object.String(name="firstLine"))
address.addColumn(web.database.object.String(name="postcode"))
address.addRelated(name="person", foreignTable="Person")

database = web.database.object.Database()
database.addTable(person)
database.addTable(address)
database.init(cursor)

We have now related the two tables using theaddRelated() method of each class instead of using
addMultiple() andaddSingle() .

Note: Because the two Classes use related joins thedatabase.createTables() method actually creates an
intermediate table to store the relationships. The modules hide this table so you don’t need to worry about it
to useweb.database.object . If you are interested the table is named by taking the two tables in alpha-
betical order and joining thier names with an underscore. For example the table in the example above will cre-
ate a table names’Adrress Person’ . This name can be customised by deriving a customised class from
web.database.object.Table and overriding the relatedTableName() method of both tables.

Here is an example:

1.5. web.database.object — An object relation mapper built on the web.database and web.form
modules

81

>>> john = database[’Person’].insert(firstName=’John’, surname=’Smith’)
>>> owen = database[’Person’].insert(firstName=’Owen’, surname=’Jones’)
>>>
>>> friendlyPlace = database[’Address’].insert(firstLine=’12 Friendly Place’, postcode=’MK4 1AB’)
>>> crazyGardens = database[’Address’].insert(firstLine=’3a Crazy Gardens’, postcode=’OX1 2ZX’)
>>> greatRoad = database[’Address’].insert(firstLine=’124 Great Road’, postcode=’JG6 3TR’)
>>>
>>> john.relate(friendlyPlace)
>>> owen.relate(greatRoad)
>>> crazyGardens.relate(john)
>>>
>>> print john[’addresses’].keys()
[’MK4 1AB’, ’OX1 2ZX’]
>>> for address in john[’addresses’].values():
... print address[’postcode’]
...
MK4 1AB
OX1 2ZX
>>> print greatRoad[’people’].keys()
[’Owen’]
>>> print owen[’addresses’][’JG6 3TR’][’people’].keys()
[’Owen’]
>>> john[’addresses’][’MK4 1AB’][’firstLine’] = ’The Cottage, 12 Friendly Place’
>>> print database[’Person’][’John’][’addresses’][’MK4 1AB’][’firstLine’]
The Cottage, 12 Friendly Place

The code should be fairly self-explainatory. We are inserting some different people and addresses into the table and
the relating them to each other. Each row from each table can be related to as many other rows from the other table as
you like. Or a row might not be related to another one at all.

It should be noted that you cannot set the values of multiple columns like the’addresses’ column directly. Instead
you should set the values of each object induvidually.

>>> john[’addresses’] = something # XXX Doesn’t work!

You can create fairly complex expressions as is demonstrated by the expression:

database[’Person’][’John’][’addresses’][’MK4 1AB’][’firstLine’]

Here we are selecting all the addresses from the row’John’ from the’Person’ table and then selecting the first
line of the address with postcode’MK4 1AB’ . It is actually possible to create circular references (although not very
useful) as shown below.

>>> john == database[’Person’][’John’] == \
... database[’Person’][’John’][’addresses’][’MK4 1AB’][’people’][’John’] \
... == database[’Person’][’John’][’addresses’][’MK4 1AB’][’people’][’John’] \
... [’addresses’][’MK4 1AB’][’people’][’John’]
True

Just for interest here is how the tables look after running the example. You can see that the AddressPerson table
contains the rowids of the related people and addresses.

82 Chapter 1. Web Modules

Tables in the ’test’ database
+----------------+
| Tables_in_test |
+----------------+
| Address |
| Person |
| Address_Person |
+----------------+

The Person table
+-------+-----------+---------+
| rowid | firstName | surname |
+-------+-----------+---------+
| 1 | John | Smith |
+-------+-----------+---------+
| 2 | Owen | Jones |
+-------+-----------+---------+

The Address table
+-------+------------------------------------+----------+
| rowid | firstLine | postcode |
+-------+------------------------------------+----------+
| 1 | The Cottage, 12 Friendly Place | MK4 1AB |
+-------+------------------------------------+----------+
| 2 | 3a Crazy Gardens | OX1 2ZX |
+-------+------------------------------------+----------+
| 2 | 124 Great Road | JG6 3TR |
+-------+------------------------------------+----------+

The Address_Person table

+--------+-----------+
| people | addresses |
+--------+-----------+
| 1 | 1 |
+--------+-----------+
| 2 | 2 |
+--------+-----------+
| 1 | 3 |
+--------+-----------+

It should be noted that each table can contain as many columns, multiple, related and single joins as you like.

Full Code Listing

Here is a complete code listing so that you can experiment:

#!/usr/bin/env python

import sys; sys.path.append(’../../../’) # show python where the modules are

import web.database, web.database.object
connection = web.database.connect(

adapter="snakesql",
database="database-object-related",
autoCreate = 1,

1.5. web.database.object — An object relation mapper built on the web.database and web.form
modules

83

)
cursor = connection.cursor()

person = web.database.object.Table("Person")
person.addColumn(web.database.object.String(name="firstName", unique=True, required=True, key=True))
person.addColumn(web.database.object.String(name="surname"))
person.addRelated(name="addresses", foreignTable="Address")

address = web.database.object.Table("Address")
address.addColumn(web.database.object.String(name="firstLine"))
address.addColumn(web.database.object.String(name="postcode", unique=True, required=True, key=True))
address.addRelated(name="people", foreignTable="Person")

database = web.database.object.Database()
database.addTable(person)
database.addTable(address)
database.init(cursor)

if not database.tablesExist():
database.createTables()
print "Created Table"

john = database[’Person’].insert(firstName=’John’, surname=’Smith’)
owen = database[’Person’].insert(firstName=’Owen’, surname=’Jones’)

friendlyPlace = database[’Address’].insert(firstLine=’12 Friendly Place’, postcode=’MK4 1AB’)
crazyGardens = database[’Address’].insert(firstLine=’3a Crazy Gardens’, postcode=’OX1 2ZX’)
greatRoad = database[’Address’].insert(firstLine=’124 Great Road’, postcode=’JG6 3TR’)

john.relate(friendlyPlace)
owen.relate(greatRoad)
crazyGardens.relate(john)

print john[’addresses’].keys()
for address in john[’addresses’].values():

print address[’postcode’]

print greatRoad[’people’].keys()
print owen[’addresses’][’JG6 3TR’][’people’].keys()

john[’addresses’][’MK4 1AB’][’firstLine’] = ’The Cottage, 12 Friendly Place’
print database[’Person’][’John’][’addresses’][’MK4 1AB’][’firstLine’]

connection.close() # Close the connection without saving changes

The output is:

Created Table
[’MK4 1AB’, ’OX1 2ZX’]
MK4 1AB
OX1 2ZX
[’Owen’]
[’Owen’]
The Cottage, 12 Friendly Place

You will need to delete the database file ‘object-related.db’ each time you run the cose so that it can be recreated each
time.

84 Chapter 1. Web Modules

1.5.5 Building Queries

You can build complex data structures because each table can contain as many columns, multiple, related and single
joins as you like. This isn’t a lot of use if you cannot then select the information you want. So far you know how to
select data using a series of keys or rowids but the power of SQL is in being able to perform complex queries on that
information. Theweb.database.object module has a facility for doing just that.

For this example we create two tables:

import web.database, web.database.object, datetime

connection = web.database.connect(type="sqlite",database="object-query.db")
cursor = connection.cursor()

person = web.database.object.Table("Person")
person.addColumn(web.database.object.String(name="firstName"))
person.addColumn(web.database.object.String(name="surname", unique=True, required=True, key=True))

queryExample = web.database.object.Table(’QueryExample’)
queryExample.addColumn(web.database.object.Date(name="testDate"))
queryExample.addColumn(web.database.object.Integer(name="testInteger"))
queryExample.addColumn(web.database.object.Integer(name="testNumber"))
queryExample.addColumn(web.database.object.Email(name="email"))

database = web.database.object.Database()
database.addTable(person)
database.addTable(queryExample)
database.init(cursor)

database[’Person’].insert(firstName="John", surname="Smith")
database[’Person’].insert(firstName="Owen", surname="Jones")
database[’QueryExample’].insert(

testDate=datetime.date(2004,7,11),
testInteger = 10,
testNumber = 15,
email = ’james@example.com’

)

To match any rows where thefirstName is ’John’ we make use of thecolumn attribute of each table. The column
attribute is a magic dictionary which allows you to compare columns to objects in natural Python code to produce a
where clause string. It is best explained by an example:

>>> where = database[’Person’].column[’firstName’] == "John"
>>> print where
(Person.firstName = ’John’)
>>> rows = database[’Person’].select(where=where)
>>> print rows
{’Smith’: <web.database.object.Row from Person table, rowid=1, firstName=’John’, surname=’Smith’>}

Here are some more examples.

1.5. web.database.object — An object relation mapper built on the web.database and web.form
modules

85

>>> column = database[’queryExample’].column
>>> column.date == datetime.date(2003,12,12)
"(QueryExample.testDate = ’2003-12-12’)"
>>> column.integer < 5
"(QueryExample.testInteger < 5)"

You can also do more complex queries using AND, OR or NOT. There are two ways of doing this. Both methods are
equivalent so please use whichever one you prefer.

Using Methods AND, ORor NOTare methods of theQueryBuilder class.

>>> where = column.AND(column.email == ’james@jimmyg.org’, column.integer < 5)
"(QueryExample.email = ’james@jimmyg.org’) AND (QueryExample.testInteger < 5)"
>>> where = column.NOT(column.email == ’james@jimmyg.org’)
"NOT (QueryExample.email = ’james@jimmyg.org’)"

Using Operators The operators&, | or ˜ are defined to mean AND, OR or NOT respectively. You can use them to
achieve the same result as above like this:

>>> where = (column.email == ’james@jimmyg.org’) & (column.integer < 5)
"((QueryExample.email = ’james@jimmyg.org’) AND (QueryExample.testInteger < 5))"
>>> where = ˜(column.email == ’james@jimmyg.org’)
"(NOT (QueryExample.email = ’james@jimmyg.org’))"

Note: The bracketsare required for queries using the&, | or ˜ operators because the operators have the same
precedence as other Python operators.

The QueryBuilder is not suitable for all queries. For example it does not currently support the multiple, single or
related joins. If you try to access these columns you will get an error saying the key is not found.

However, all is not lost. Since this is an SQL database after all you can use an SQLcursor.select() method to
get the rowids of the rows you are after and then convert them to objects using therow() method of the appropriate
table object.

This situation may change with later versions of the module.

How It Works

EachQueryBuilder object returns a number ofQuery objects. TheseQuery objects have most of there op-
erators overloaded so that they return correctly encoded strings when compared to values or otherQuery objects.
Unfortunately it is not possible to useand , or or not operators so instead theQuery objects use&, | or ˜ instead.

It is actually possible to write your where clauses as SQL if you are using an SQL driver. Changing the first line of our
from where = query.firstName == "John" to where = ’Person.firstName="John"’ we have:

>>> where = ’Person.firstName="John"’
>>> rows = database[’Person’].select(where=where)
>>> print rows
{’Smith’: <Row firstName="John", surname="Smith">}

86 Chapter 1. Web Modules

and we get the same result. In fact the codecolumn.firstName == ’John’ from the first example actually
returns the SQL encoded string (’Person.firstName="John"’) so the two approaches are the same.

There are two advantages of using theQueryBuilder approach rather than writing your own where clauses as
strings:

1. TheQueryBuilder automatiacally handles any data conversion. This is pretty trivial in the example above
as the string"John" requires on conversion but if you are doing a query on a date it would be a little more
complicated. Using theQueryBuilder takes care of it for you.

2. If a new driver was written for theweb.database.object module it may require where clauses in a differ-
ent format from SQL strings. If you write your code using aQueryBuilder you can avoid this complication.

Supported Operators

TheQueryBuilder object supports the following operators:

The three tables below describe the overloaded operators which you can use withQueryBuilder objects.

Operator Description
< Less than.
<= Less than or equal to.
== Equal to.
<> Not equal to.
> Greater than.
>= Greater than or equal to.

Other Operators

Operator Description
+ Add
- Subtract
* Multiply
/ Divide
abs Absolute value of
** To the power of
% Mod

Logical Operators

Operator Description
& AND
| OR
˜ NOT

Supported Functions

Function Description
AND Equivalent to using the & operator on aQuery object.
OR Equivalent to using the — operator on aQuery object.
NOT Equivalent to using the ˜ operator on aQuery object.

1.5. web.database.object — An object relation mapper built on the web.database and web.form
modules

87

Full Code Listing

Here is a complete code listing so that you can experiment:

#!/usr/bin/env python

import sys; sys.path.append(’../../../’) # show python where the modules are

import web.database, web.database.object
connection = web.database.connect(

adapter="snakesql",
database="database-object-query",
autoCreate = 1,

)
cursor = connection.cursor()

import datetime

person = web.database.object.Table("Person")
person.addColumn(web.database.object.String(name="firstName"))
person.addColumn(web.database.object.String(name="surname", unique=True, required=True, key=True))

queryExample = web.database.object.Table(’QueryExample’)
queryExample.addColumn(web.database.object.Date(name="testDate"))
queryExample.addColumn(web.database.object.Integer(name="testInteger"))
queryExample.addColumn(web.database.object.Integer(name="testNumber"))
queryExample.addColumn(web.database.object.Email(name="email"))

database = web.database.object.Database()
database.addTable(person)
database.addTable(queryExample)
database.init(cursor)

if not database.tablesExist():
database.createTables()
print "Created Table"

database[’Person’].insert(firstName="John", surname="Smith")
database[’Person’].insert(firstName="Owen", surname="Jones")

database[’QueryExample’].insert(
testDate=datetime.date(2004,7,11),
testInteger = 10,
testNumber = 15,
email = ’james@example.com’

)

where = database[’Person’].column[’firstName’] == "John"
print where

rows = database[’Person’].select(where=where)
print rows

column = database[’queryExample’].column

print column[’testDate’] == datetime.date(2003,12,12)
print column[’testInteger’] < 5

print column.AND(column[’email’] == ’james@jimmyg.org’, column[’testInteger’] < 5)

88 Chapter 1. Web Modules

print column.NOT(column[’email’] == ’james@jimmyg.org’)

print (column[’email’] == ’james@jimmyg.org’) & (column[’testInteger’] < 5)
print ˜(column[’email’] == ’james@jimmyg.org’)

connection.close() # Close the connection without saving changes

The output is:

Created Table
(Person.firstName = ’John’)
{’Smith’: <web.database.object.Row from Person table, rowid=1, firstName=’John’, surname=’Smith’>}
(QueryExample.testDate = ’2003-12-12’)
(QueryExample.testInteger < 5)
(QueryExample.email = ’james@jimmyg.org’) AND (QueryExample.testInteger < 5)
NOT (QueryExample.email = ’james@jimmyg.org’)
((QueryExample.email = ’james@jimmyg.org’) AND (QueryExample.testInteger < 5))
(NOT (QueryExample.email = ’james@jimmyg.org’))

You will need to delete the database file ‘object-related.db’ each time you run the cose so that it can be recreated each
time.

1.5.6 Creating Forms/Tables

Lets go back to a simple example:

import web.error; web.error.enable()
import web, web.database, web.database.object, os

connection = web.database.connect(type="sqlite", database="object-form.db")
cursor = connection.cursor()

person = web.database.object.Table("Person")
person.addColumn(web.database.object.String(name="firstName", required=True))
person.addColumn(web.database.object.String(name="surname", required=True))

database = web.database.object.Database()
database.addTable(person)
database.init(cursor)

If we wanted to create a form to display as HTML to add a new person to the table we could use the following code:

1.5. web.database.object — An object relation mapper built on the web.database and web.form
modules

89

>>> form = database[’Person’].form()
>>> print form.html()
<form id="Person" class="pythonweb" action="" method="post" enctype="multipart/for
m-data">
<input type="hidden" name="table" value="Person">
<input type="hidden" name="mode" value="submitAdd">
<table border="0">
<tr><td><table border="0" cellpadding="3" cellspacing="0">
<tr>

<td valign="top">Firstname </td>
<td> </td>
<td valign="top"><input type="text" name="Person.firstName" size="40" maxlengt

h="255" value=""></td>
<td valign="top"></td>

</tr>
<tr>

<td valign="top">Surname </td>
<td> </td>
<td valign="top"><input type="text" name="Person.surname" size="40" maxlength=

"255" value=""></td>
<td valign="top"></td>

</tr>
</table>
</td></tr>
<tr><td> </td></tr>
<tr><td><input type="submit" value="Submit" name="action"></td></tr>
</table>
</form>

The form object generated byform = database[’Person’].form() is a normalweb.form.Form object
and can be used exactly as anyForm object can. See the documentation for theweb.form module for more infor-
mation.

Now we need to get the information the user enters into the database. As with all form objects we follow the following
routine once we have aform object:

90 Chapter 1. Web Modules

form = database[’Person’].form() # Continuing from the previous example.
import web
print web.header() # Print the content-type information
if len(web.cgi) > 1: # Assume form submitted

form.populate(web.cgi)
if form.valid():

entry = database[’Person’].insert(all=form.dict())
print ’<html>%s<p>Go Back</html>’%(

’<h1>Entry Added</h1>’ + form.frozen(),
os.environ[’SCRIPT_NAME’]

)
else:

’<html><h1>Error</h1>%s</html>’%(
"""<p>There were some invalid fields.
Please correct them.</p>""" + form.html()

)
else:

entries = ’’
for row in database[’Person’].values():

entries += ’%s %s
’%(row[’firstName’] ,row[’surname’])
print "<html>%s<h4>Entries</h4><p>%s</p></html>"%(

’<h1>Enter Data</h1>’+form.html(),
entries

)

And that’s about it. We populate the form and check it is valid exactly as we would with any form object. The dictio-
nary returned byform.dict() can be used in thedatabase[’Person’].insert() function by specifying
it as theall parameter.

A handy point to note is that if you don’t want the user to be able to add information to all of the form fields you can
use theremove() method of the form to remove a field from the form by name before creating the HTML version
of the form. For example:

>>> form = database[’Person’].form()
>>> form.remove(’surname’)
>>> print form.html()
<form id="Person" class="pythonweb" action="" method="post" enctype="multipart/for
m-data">
<table border="0">
<tr><td><table border="0" cellpadding="3" cellspacing="0">
<tr>

<td valign="top">Firstname </td>
<td> </td>
<td valign="top"><input type="text" name="Person.firstName" size="40" maxlengt

h="255" value=""></td>
<td valign="top"></td>

</tr>
</table>
</td></tr>
<tr><td> </td></tr>
<tr><td><input type="submit" value="Submit" name="action"></td></tr>
</table>
</form>

1.5. web.database.object — An object relation mapper built on the web.database and web.form
modules

91

Full Code Listing

Here is a complete code listing so that you can experiment:

#!/usr/bin/env python

show python where the modules are
import sys; sys.path.append(’../’); sys.path.append(’../../../’)

import web.error; web.error.enable()
import web, web.database, web.database.object, os

connection = web.database.connect(
adapter="snakesql",
database="database-object-form",
autoCreate = 1,

)
cursor = connection.cursor()

person = web.database.object.Table("Person")
person.add(column="String", name=’firstName’, required=True)
person.addColumn(web.database.object.String(name="surname"))
person.addColumn(

web.database.object.StringSelect(
name="profession",
options=[None, ’Developer’, ’Web Developer’],
displayNoneAs=’Not Specified’

)
)
person.add(column="Bool", name=’sex’, displayTrueAs=’Male’, displayFalseAs=’Female’)
database = web.database.object.Database()
database.addTable(person)
database.init(cursor)

if not database.tablesExist():
database.createTables()

form = database[’Person’].form()
print web.header() # Print the content-type information
if len(web.cgi) > 1: # Assume form submitted

form.populate(web.cgi)
if form.valid():

entry = database[’Person’].insert(all=form.dict())
print ’<html>%s<p>Go Back</html>’%(

’<h1>Entry Added</h1>’ + form.frozen(),
os.environ[’SCRIPT_NAME’]

)
else:

print """<html><h1>Error</h1><p>There were some invalid fields.
Please correct them.</p>%s</html>"""%(form.html())

else:
entries = ’<table border="0"><tr><td>Firstname</td>’
entries += ’<td>Surname</td><td>Profession</td><td>Sex</td></tr>’
for row in database[’Person’].values():

entries += ’<tr><td>%s</td><td>%s</td><td>%s</td><td>%s</td></tr>’%(
row[’firstName’],
row[’surname’],
row[’profession’],
row[’sex’]

92 Chapter 1. Web Modules

)
entries += ’</table>’
print "<html>%s<h4>Entries</h4><p>%s</p></html>"%(

’<h1>Enter Data</h1>’+form.html(),
entries

)

connection.commit() # Save the changes
connection.close() # Close the connection

You can test this example by starting the test webserver in ‘scripts/webserver.py’ and visiting
http://localhost:8080/doc/src/lib/webserver-web-database-object-form.py on your local machine.

1.5.7 Creating Tables by Defining Classes

As well as defining your table by adding columns to aweb.database.object.Table object you can define
your own class derived from aweb.database.object.Table object instead. Here is the same database defined
above but created using classes instead:

import web, web.database, web.database.object

connection = web.database.connect(type="mysql", database="MyDatabase")
cursor = connection.cursor()

class Person(web.database.object.Table):
def setup(self):

self.addColumn(web.database.object.String(name="firstName"))
self.addColumn(web.database.object.String(name="surname"))
self.addMultiple(name="addresses", foreignTable="Address")

class MyDatabase(web.database.object.Database):
def setup(self):

self.addTable(Person())

myDatabase = MyDatabase()
myDatabase.init(cursor)

Whilst this may look more complicated it is a more object oriented solution and allows you to build complex
table objects with increased functionaility by defining your own objects. For example you could override the
relatedTableName() method of both tables to have your own table name created for multiple join tables.

1.5.8 Other Useful Features

This example below demonstrates some other useful methods.

#!/usr/bin/env python

import sys; sys.path.append(’../../../’) # show python where the modules are

import web.database, web.database.object
connection = web.database.connect(

adapter="snakesql",
database="database-object-others",
autoCreate = 1,

1.5. web.database.object — An object relation mapper built on the web.database and web.form
modules

93

)
cursor = connection.cursor()

person = web.database.object.Table("Person")
person.addColumn(web.database.object.String(name="firstName"))
person.addColumn(web.database.object.String(name="surname"))

database = web.database.object.Database()
database.addTable(person)
database.init(cursor)

if not database.tablesExist():
database.createTables()
print "Created Table"

john = database[’Person’].insert(firstName="John", surname="Smith")
owen = database[’Person’].insert(firstName="Owen", surname="Jones")

print database[’Person’].max(’rowid’)
print database[’Person’].max(’firstName’)
print database[’Person’].min(’surname’)

print database.output()

connection.close() # Close the connection without saving changes

The output is:

Created Table
2
Owen
Jones
+---------------------+
| Database ’Database’ |
+---------------------+
| Person |
+---------------------+

1.5.9 Class Reference

The following sections describe the full Class reference of the three main classes used in the
web.database.object module.

The Database Object

TheDatabase object is used primarily as a container forTable objects. The function reference is shown below:

classDatabase ([,name=None])
nameis an arbitrary name for the database used by thestr() andrepr() funcitons. If not specifiednameis
set to the class name for the database.

addTable (table)
Adds the table objecttableto the database

94 Chapter 1. Web Modules

init (cursor)
Initialise the database by associating it with theweb.database cursor specified btcursor. Once the
database is initialised you can’t add or change the table definitions.

createTables ()
Create all the necessary tables

dropTables ([ignoreErrors=False])
Remove all tables defined in the database. IfignoreErrors is True don’t raise an Exception if the table
doesn’t already exist.

tablesExist ()
ReturnTrue if all the tables exist,False otherwise.

table (name)
Return the table object for the table namedname

getitem (name)
Return the table object for the table namedname

keys ()
Return a tuple containing the names of the tables in the database

values ()
Return a tuple containing theweb.database.object.Table objects for each of the tables in the
database

items ()
Return a tuple containing 2-tuples of(key, value) pairs where thekeyis the table name and thevalueis
theweb.database.object.Table object.

dict ([tables=False], [rows=False])
Return all the tables a dictionary indexed by the table names. Iftablesis True then eachtable object in
the dictionary if also made into a dictionary of key:Rowpairs. If rows is True then eachRowobject of
each table is made into a dictionary of column name : value pairs, except for single, multiple and related
joins columns, since this could result in circular references.

has key (key)
ReturnsTrue if the database has a tabletable , False otherwise

output ([width=80])
Return a string representation of the database and tables in the form of a table. Ifwidth is 0 then no
wrapping is done. Otherwise the table is wrapped towidth characters. See theweb.util.table()
documentation for more information.

cursor
The underlyingweb.database cursor.

name
The name of the database specified by thenameparameter of the constructor. Used by thestr() and
repr() funcitons.

Table objects can be obtained from aDatabase object by treating theDatabase object as a dictionary ofTable
objects referenced by their names.

For example, if aDatabase object nameddatabase has tables namedPerson andAddress you would access
thePerson table withdatabase[’Person’] and theAddress table withdatabase[’Address’] .

>>> database[’Person’]
<web.database.object.Table ’Person’>

TheDatabase object also provides asetup() method which can be used to setup fields if you want to create your
own customDatabase object.

1.5. web.database.object — An object relation mapper built on the web.database and web.form
modules

95

The Table Object

classDatabase ([ignoreCreateAndDrop=False])
If ignoreCreateAndDropis True then the table is not created or dropped when the database methods
createTables() or dropTables() are called.

addColumn (column)
Add aweb.database.object column object to the table.

addMultiple (name, foreignTable)
Add a column named by the stringnameto the table. The column will be used to reference multiple rows
from the table named by the stringforeignTable. The foreign table will have a corresponding addSingle()
entry for this table.

addSingle (name, foreignTable)
Add a column named by the stringnameto the table. The column will contain a reference to a row in the
foreign table named by the stringforeignTable. The foreign table will have a corresponding addMultiple()
entry for this table.

addRelated (name, foreignTable)
Add a column named by the stringnameto the table. The column will contain a reference to any number
of rows in the foreign table named by the stringforeignTable. The foreign table will have a corresponding
addRelated() entry for this table and will contain a reference to any number of rows from this table.

columns ()
Return a tuple of the column names of the table.

keys ()
Return a tuple containing the keys of the rows in the table.

values ()
Return a tuple containing theweb.database.object.Row objects in the table.

items ()
Return a tuple containing 2-tuples of(str(key), value) pairs where the key is the
web.database.object.Row key and thevalueis theweb.database.object.Row object.

has key (key)
ReturnsTrue if the table has a row with a keykey, False otherwise

dict ([rows=False])
Return the rows in the table as a dictionary indexed by string representations of their keys. Ifrowsis True
then eachRowobject is made into a dictionary of column name : value pairs, except for single, multiple
and related joins columns, since this could result in circular references.

create ()
Create the table.Note: Usually this is done automatically through thecreateTables() method of the
Database class.

drop ()
Drop the table.Note: Usually this is done automatically through thedropTables() method of the
Database class.

exists ()
ReturnTrue if the table exists in the database,False otherwise.

rowExists (rowid)
ReturnTrue if the row specified by the integerrowid exists in the table,False otherwise.

columnExists (name)
ReturnTrue if the columnnameexists in the table,False otherwise.

insert ([all=None], [**params])
Insert a new row to the table. Either specify the values as a dictionary as theall parameter with the
column names as keys and the values as the column valuesor specify each column value pair in the form

96 Chapter 1. Web Modules

colName=value, . You must use one of the two methods.Note: all is a reserved word so there should
be no confusion between using the two notations.

delete (rowid)
Delete a row by specifying therowid of the row with therowid parameter.Warning: This method does
not delete corresponding rows in foreign tables. If you delete a row there will still be references to it in
other tables if it contains any colums added byaddMultiple or addSingle() for example. These
should be deleted manually. XXX is this a bug or a useful feature?

row (rowid)
Return theRowwith therowid specified by therowid parameter.

getitem (key)
Return theRowwith thekey specified by thekeyparameter.Note: Certain objects such as class objects
cannot be used as dictionary keys. All keys are converted to strings using thestr() function so any
object to be used as a key must return a unique value when itsstr () is called. This also means that

select (where[,order=None][,rowids=False])
Select theRowobjects specified by thewhereparameter in the oreder specified by theorder parameter. If
rowids is True then a list ofrowid s is returned rather than a dictionary ofRowobjects.

form ([action=”][, method=’post’][, stickyData={}][, enctype=’multipart/form-data’][, submit=’Submit’][,
modeDict={’mode’:’mode’, ’table’:’table’, ’submode’:’submode’}][, submode=’add’])

Return an emptyweb.form Form object to allow data to be added to the table.

max(column[, rows=’post’])
Returns the highest value ofcolumnin the current table. Ifrows is True returns a list of rows which have
the maximum value ofcolumn.

min (column[, rows=’post’])
Returns the lowest value ofcolumnin the current table. Ifrows is True returns a list of rows which have
the minimum value ofcolumn.

column
Magic attribute which allows you to build SQL where clauses in natural Python language. For example:

>>> print database[’table’].column[’column1’] == 23 \
... && database[’table’].column[’column2’] < datetime.date(2004,12,04)
column1=23 AND column2<’2004-12-24’

See the ”Building Queries” section for more information.

Table rows can be accessed using therow() method or by using the getitem () method as follows. To return
the row with where thekey is surname and you want the row with surname’Smith’ from the’Person’ table
of the database wrapped bydatabase you would do this:

>>> database[’Person’][’Smith’]
<web.database.object.Row from ’Person’ Table, rowid=1, firstName=’John’, surname=’Smith’>

The Row Object

You don’t need to createRowobjects directly. Instead they should be created by using the appropriate methods of the
Table class.

Rowobjects support the standard comparison operators<,<=,>,>=,==,<> as well as thelen() function.

classRow() form ([action=”][, method=’post’][, stickyData={}][, enctype=’multipart/form-data’][, submit=’Submit’][,
modeDict={’mode’:’mode’, ’table’:’table’, ’submode’:’submode’}][, submode=’add’])

Return aweb.form Form object populated with the information from theRow

1.5. web.database.object — An object relation mapper built on the web.database and web.form
modules

97

relate (row)
Relate thisRow to anotherRow object specified byrow. Both Rows must be from tables related with
addRelated() columns and must not alread be related.

unrelate (row)
Unrelate thisRowfrom anotherRowobject specified byrow. BothRows must be from tables related with
addRelated() columns and must already be related.

isRelated (row)
ReturnsTrue if the Rows are already related, otherwise returnsFalse .

update ([all=None],[**params])
Set multiple values of this row in one go. This currently not optimised so it makes an SQL call for
each column set. Set eitherall as a dictionary ofcolumn:values pairs or set**params by using
column=value pairs.

keys ()
Return a tuple containing the column names of the fields.

values ()
Return a tuple containing values of each field for the current row.

items ()
Return a tuple containing 2-tuples of(key, value) pairs where thekeyis the column name and thevalue
is the value of each field for the current row.

has key (column)
ReturnsTrue if the row has a column namedcolumn, False otherwise

dict ()
Return the row as a dictionary of column name : value pairs, except for single, multiple and related joins
columns, since this could result in circular references.

rowid
The rowid of the row

Each column from theRowcan be accessed through a dictionary-like interface. For example to print the value of the
column named’firstName’ from theRowwith rowid 1 from the’Person’ table in the databasedatabase
you would use:

>>> print database[’Person’][1][’firstName’]
John

1.5.10 Future

This is a list of things currently not included in the module but which may be of use later on:

• Support for functions such as LIKE, BETWEEN, NOW etc.

• Specify different columns for automatic RSS generation

• Build many-to-many support into the query builder

• Deal with ” being interpreted as None

98 Chapter 1. Web Modules

1.6 web.error — Enhanced error handling based on the cgitb module

Theweb.error module provides enhanced functionality similar to thecgitb module distributed with Python. If
an exception is raised theweb.error module can catch the error and produce a customised display of the error, the
surrounding code and the values of variables in the line which caused the error. It also provides the ability or log errors
to a file in various formats.

Using the module you can also provide your own error handling. The example at the end shows you how to create a
custom error handler to email error reports to a devloper.

See Also:

cgitb Module Documentation
(http://www.python.org/doc/current/lib/module-cgitb.html)

Find out more about thecgitb module on which this module is based.

1.6.1 Basic Usage

The easiest way of catching and handling errors in Python is to use atry:.. except:.. block around all
your code as shown below:

try:
raise Exception(’This error will be caught’)

except:
print "An error occured"

If you want to produce more detailed error reports you can do something like this:

try:
raise Exception(’This error will be caught and nicely displayed’)

except:
import web.error
print web.error.info(output=’traceback’, format=’text’)

This will produce a text format output of the traceback information.

If no parameters are specified in theweb.error.info() function the result returned is a full HTML debug repre-
sentation of the error similar to that produced by thecgitb module.

Often a more convenient way to catch errors is by using theweb.error.handle() method. If an error is raised
it will be automatically handled. The default behaviour is to print aContent-type header followed by HTML
information about the error suitable for display in a web browser. This can be done as follows:

import web.error
web.error.handle()

raise Exception(’This error will be caught and nicely displayed for a web browser’)

This will produce a full HTML page giving the debug traceback of the error.

Python allows you to put both lines of code on one line to make things look neater if you use a; so in some of the
following samples the error handling initialising will look like this:

1.6. web.error — Enhanced error handling based on the cgitb module 99

import web.error; web.error.handle()

Agian a full HTML page giving the tracback of the error is displayed together with the HTTP header for display in a
browser.

#!/usr/bin/env python

show python where the web modules are
import sys; sys.path.append(’../’); sys.path.append(’../../../’)

import web.error; web.error.handle()
raise Exception(’This is a test exception’)

You can test this example by starting the test webserver in ‘scripts/webserver.py’ and visiting
http://localhost:8080/doc/src/lib/webserver-web-error.py on your local machine.

You can specify the information displayed by theweb.error.handle() function by passing any parameters that
can be passed to theweb.error.info() function, but if you do this you should also specify the handler you wish
to use. The example below prints a text representation of the code which caused the error to a web browser:

import web.error
web.error.handle(

handler = ’browser’,
output = ’code’,
format = ’text’,

)

Finally, you may wish to use a different error handler, for example you may wish to log the error to a file rather than
displaying it. You can specify thehandlerparameter as a string representing the name of the handler you wish to use.
Any extra parameters the handler takes can also be specified in thehandle() function. In this examplefilenameis a
parameter used by thefile handler andoutputandformatare used by theweb.error.info() function to create
a representation of the error:

import web.error
web.error.handle(

handler = ’file’,
filename = ’test.html’,
output = ’traceback’,
format = ’text’,

)

raise Exception(’This error will be caught appended to the test.html file as a text format traceback’)

This time the error will be logged to the file ‘test.html’ and no output will be printed.

The next sections describe the options for theerror() and info() functions and the various error handlers you
can use with thehandle() function provided in theweb.error.handler module. The final section describes
how you can create custom error handlers for even more advanced error handling.

There is a section in the documentation for theweb.wsgi module describing how error handling could be performed
in a Web Server Gateway Interface application.

100 Chapter 1. Web Modules

1.6.2 Using The info() Function

Theweb.error.info() function returns a representation of the error raised according to the options specified. If
no options are specified an HTML debug representation is returned.

The parameters used in theweb.error.info() can also be used in theweb.error.handle() function to
describe how the handled error should be displayed.

Below is the API reference for theweb.error.info() .

web.error.info ([error], [context=5])
Return a string representing the error according to parameters specified.

output=’debug’The output format for the exception. Can be’traceback’ for a traceback,’code’ for a
code listing or’debug’ for code and traceback listing suitable for script debugging. If not specified
info() returns aErrorInformation object.

format=’html’ The default output format. Can currently be’text’ or ’html’ .

errorAn exception tuple as retured bysys.exc info() . If not specifiedsys.exc info() (which con-
tains the current traceback information) is used.

contextThe default number of lines of code to display in traceback information. The default is5.

1.6.3 Using The handler() Function

If you want more control over the format of the error messages you can use one of the handlers in
web.error.handler .

Theweb.error.handle() function has the following parameters:

handle ([handler], [**params])
handlershould be a string representing the name of a default handler to use or a custom handler function. The
parameters specified byparamsare a combination of parameters used by the handler function chosen and any
of the parametersoutput, formatandcontextused to specify how the error information is displayed.

For example:

web.error.handle(
handler = ’file’,
filename = ’test.html’,
output = ’traceback’,
format = ’text’

)

This would append a text format traceback of the error to the ‘test.html’ file.

The default value forhandleris ’browser’ and the default display options produce a full HTML debug report
so most of the time the following code is sufficient to add at the top of a CGI script:

import web.error; web.error.handle()

In the example below we specifyformatas’text’ handler to ouput a text representation of the error:

1.6. web.error — Enhanced error handling based on the cgitb module 101

import web.error; web.error.handle(handler=’browser’, output=’debug’, format=’text’)
This is line 2
This is line 3
This is line 4
This is line 5
raise Exception(’This error will be caught and nicely displayed’)
This is line 7
This is line 8
This is line 9
This is line 10

This produces the output:

Content-type: text/plain

exceptions.Exception
Python 2.2.3 : C:\WINDOWS\Python22\pythonw.exe
Tue Jan 18 20:43:21 2005

A problem occurred in a Python script. Here is the sequence of
function calls leading up to the error, in the order they occurred.

C:\Work\PythonWeb.org\CVS Branches\Web Modules 0.5\test.py
4 # This is line 4
5 # This is line 5
6 raise Exception(’This error will be caught and nicely displayed’)
7 # This is line 7
8 # This is line 8

Exception undefined
exceptions.Exception: This error will be caught and nicely displayed

args = (’This error will be caught and nicely displayed’,)

The above is a description of an error in a Python program. Here is
the original traceback:

Traceback (most recent call last):
File "test.py", line 6, in ?

raise Exception(’This error will be caught and nicely displayed’)
Exception: This error will be caught and nicely displayed

Note that the handler printedContent-type HTTP header. This is so that the output could be displayed in a
web browser. If this header wasn’t displayed you would see anInternal Server Error 500 message in the
browser.

If you are not writing a web application you might choose to use the’print’ handler instead of the’browser’
handler so that theContent-type HTTP header is not displayed.

If you want to control the number of lines of code displayed in the error output you can set thecontextparameter. This
is the number of lines to be displayed around each line of the traceback. In the example below we setcontext=3 to
reduce the amount of output:

import web.error; web.error.handle(handler=’print’, output=’debug’, format=’text’, context=3)

102 Chapter 1. Web Modules

The output is:

exceptions.Exception
Python 2.2.3 : C:\WINDOWS\Python22\pythonw.exe
Tue Jan 18 20:45:02 2005

A problem occurred in a Python script. Here is the sequence of
function calls leading up to the error, in the order they occurred.

C:\Work\PythonWeb.org\CVS Branches\Web Modules 0.5\test.py
5 # This is line 5
6 raise Exception(’This error will be caught and nicely displayed’)
7 # This is line 7

Exception undefined
exceptions.Exception: This error will be caught and nicely displayed

args = (’This error will be caught and nicely displayed’,)

The above is a description of an error in a Python program. Here is
the original traceback:

Traceback (most recent call last):
File "test.py", line 6, in ?

raise Exception(’This error will be caught and nicely displayed’)
Exception: This error will be caught and nicely displayed

Note that there are fewer lines of code in the code display of the traceback than before.

If info is not specified in thehandler() function, information can be produced in any of the formats supported by
info() simply by passing thehandler() function the parameters you would normally pass toinfo() and not
specifying theinfo parameter. The exception to this rule it thathandler() does not accept theoutput=’class’option
as this does not produce text output.

There are three built-in handlers each of which handle the error information generated in different ways.

’print’ (web.error.handler.send()) Simply prints the error information to the standard output.

’browser’ (web.error.handler.browser()) Sends the error information to the standard output after first
sending an HTTPContent-type header for display in a web browser. You can over-ride the default header
to be sent by specifyingheader. For exampleheader=’text/plain’ would send aContent-type:
text/plain HTTP header.

’file’ (web.error.handler.file()) Writes the error information to the file specified byfilename.

If no filenameis specified, the error information is written to a file in the format2005-01-18.log . If append
is specifiedFalse the file is overwritten, the default isTrue meaning that error information is appended to the
file. If dir is specified, files are logged to that directory, the default is to log to the script directory.Warning:
It is good practice, but not enforced, to specifydir otherwise it is possible a logfile will overwrite a file of the
same name.

If messageis specified that message is sent to the standard output. Usually you should setmessageto be some-
thing likeweb.header(’text/plain’)+’An error occured and has been logged.’ . Ob-
viously you would not need to specifyweb.header(’text/plain’) if you are not outputting the error
message to a web browser.

All of the handlers are used in the same way.

1.6. web.error — Enhanced error handling based on the cgitb module 103

1.6.4 Using The error() Function

Alternatively you can create anErrorInformation object to display the error information:

try:
raise Exception(’This error will be caught and nicely displayed’)

except:
import web.error
errorInfo = web.error.error()
print error.textException()

This would aproduce the same output described in the previous example.

Theweb.error.error() function returns anErrorInformation object which can be used to format excep-
tion tuples in a variety of useful ways. Below is the API reference for theweb.error.error() function and the
Information objects returned.

web.error.error ([error=sys.exc info()], [context=5])
Return anErrorInformation object representing the error.

errorThe traceback tuple you wish to display information for. If not specified the last exception is used.

contextThe default number of lines of code to display in traceback information. The default is5.

classErrorInformation
Error Information objects have the following attributes:

error
The error tuple specified in theinfo() function orsys.exc info() if no error was specified.

format
The default output format of the methods. Can currently be’text’ or ’html’ .

pythonVersion
A string representing the version of Python being used.

errorType
The Exception raised

errorValue
The error message.

date
A string representing the date and time theInformation object was created.Note: This may not be
the time the error occured.

context
The number of lines of code to display in error information.

Error Information objects have the following methods for displaying error informationNote: Python 2.1
and below do not have thecgitb module and so have slightly different implementations of thehtml() and
text() methods so the output of those methods may be different to the output generated using Python 2.2 and
above.

ouput (output,[format], [error], [context])
output can be’traceback’ for a traceback,’code’ for a code listing or’debug’ for code and
traceback listing suitable for script debugging. The method returns the result of calling the respective
method below.

traceback ([format], [error])
Returns the traceback of the error in the format specified byformat which can currently be’text’ or
’html’ . If not specifiedformat takes the value offormat . error should be an error tuple as returned by
sys.exc info() . If not specifiederror is used.

104 Chapter 1. Web Modules

code ([format], [error], [context])
Returns relevant lines of code and variables from the traceback in the format specified byformat which
can currently be’text’ or ’html’ . If not specifiedformat takes the value offormat . contextis the
number of lines of code to display at each stage in the traceback information. If not specifiedcontext is
used.error should be an error tuple as returned bysys.exc info() . If not specifiederror is used.

debug ([format], [error], [context])
Returns the traceback of the error in the format specified byformat together with relevant lines of code
and variables.format can currently be’text’ or ’html’ . If not specifiedformat takes the value of
format . contextis the number of lines of code to display at each stage in the traceback information. If
not specifiedcontext is used.error should be an error tuple as returned bysys.exc info() . If not
specifiederror is used.

1.6.5 Creating Custom Handlers

If the built-in handlers don’t provide the level of cutomisation you require you can create a custom handler.

Handlers are simply callables which take the info string to output as the first parameter and any parameters passed to
thehandle() function as subsequent parameters.

For example:

>>> def myHandler(info, message):
... print message
>>>
>>> import web.error; web.error.handle(myHandler, message="An error occured")
>>> raise Exception(’This is an error’)
An error occured

This example isn’t too useful as it always displays the same output. To make it more useful

>>> def myHandler(info, message):
... print message
... print info
>>>
>>> import web.error
>>> web.error.handle(
... myHandler,
... format=’text’,
... output=’traceback’,
... message=’An error occured’,
...)
>>> raise Exception(’This is an error’)
An error occured
exceptions.Exception: This is an error

args = (’This is an error’,)

output is used to obtain the error information from theinfo() function which is then sent as the first parameter to
themyHandler function.messageis also sent to themyHandler function which prints the error message.

This structure allows building very powerful handlers.

1.6. web.error — Enhanced error handling based on the cgitb module 105

1.6.6 Example

Take a look at the example below demonstrating a handler which emails information to a developer:

#!/usr/bin/env python

show python where the web modules are
import sys; sys.path.append(’../’); sys.path.append(’../../../’)

set your own email here
email = ’james@example.com’

define our custom handler
def mail(info, email, message, reply):

import web, web.mail
web.mail.send(

msg=info,
to=email,
reply=reply,
subject=’Error in website’,
sendmail=’usr/bin/sendmail’,
smtp=’smtp.ntlworld.com’,
method=’smtp’,# could use method=’sendmail’ to send using sendmail.
type=’html’,

)
print web.header()
print message

setup our handler
import web.error
web.error.handle(

handler = mail,
output = ’debug’,
email = email,
message = """ <html>

<head><title>An Error Occured</title></head>
<body><h1>Error Caught</h1>
<p>An HTML debug view of the error was sucessfully emailed to %s</p></body>
</html>"""%email,

reply = ’Developer <%s>’%email
)

rasie a test exception and wait for the email to arrive
raise Exception(’This is a test exception’)

You can test this example by starting the test webserver in ‘scripts/webserver.py’ and visiting
http://localhost:8080/doc/src/lib/webserver-web-error-mail.py on your local machine.

Warning: If you run this example please make sure you replace the email addresses with your own email address
in. You may need to change the path of sendmail or use an SMTP server instead. See theweb.mail module
documentation for help with this.

Note: If an exception occurs in your custom error handling function it may be difficult to track down. You can put
your code inside atry except block and make sure some sensible output is returned in the event of an Exception
being raised.

106 Chapter 1. Web Modules

1.6.7 Debugging Code

If you are using theweb.error module from a command line or supporting webserver such as ‘scripts/webserver.py’
in the source directory you can raise aweb.error.Breakpoint Exception and it will be caught and provide a
prompt from which you can debug your code.

#!/usr/bin/env python

show python where the modules are
import sys; sys.path.append(’../’); sys.path.append(’../../../’)

import web.error; web.error.handle(’debug’)

print "Setting value to 5"
value = 5
print "Raising a Breakpoint so you can inspect value"
raise web.error.Breakpoint
print "The program has exited so this will not be printed"

This code provides a prompt that can be used as follows:

> python "command-web-error-debug.py"
Setting value to 5
Raising a Breakpoint so you can inspect value
> y:\doc\src\lib\command-web-error-debug.py(11)?()
-> raise web.error.Breakpoint
(Pdb) value
5
(Pdb) exit

The prompt uses thepdb module. To exit the debugger typeexit and press Return. Code after the
web.error.Breakpoint Exception was raised is not executed.

See Also:

The Python Debugger To find out more about the Python Debugger see the documentation for thepdb module
distributed with Python.

1.7 web.environment — Tools for seting up an environment

Theweb.environment module provides a single function nameddriver() used to obtain an environment driver
to setup or remove an environment.

In the context of a PythonWeb application the environment describes the structures in place in the storage medium and
mainly relates to theweb.auth andweb.session modules.

Environments are best explained by an example. If you are using a database environment it means that you will be
storing session and user information in a series of database tables. Before you can start using these tables they need to
be created. Theweb.environment module provides tools to setup the database tables needed. If you were using a
file environment, you may need to create the necessary directory structure.

Within an environment, applications can share session and user tables and access each other’s information. For ex-
ample if you had two applications namedguestbook andnews, you might want a user namedjames to be able
to access both of them without having to sign in to both applications. If theguestbook andnews applications are
both in the same environment this is easy since they both use the same session ID and user information.

1.7. web.environment — Tools for seting up an environment 107

Each environment has a name. In the context of a database environment the environment name is simply a string
which is used to prepend all the environment tables so that multiple environments (with different names) can exist in
the same database. This means that you can run all the PythonWeb environments you want to from the same database
which is handy if your shared web hosting agreement only gives you access to one database. In the context of a file
environment, the environment name might be the name of the directory holding the data files.

1.7.1 Example

In order to use theweb.session andweb.auth modules the environment must be setup correctly. You can create
the necessary environment using theweb.environment module’sdriver() function as shown below:

#!/usr/bin/env python

show python where the modules are
import sys; sys.path.append(’../’); sys.path.append(’../../../’)

Setup a database connection
import web.database
connection = web.database.connect(

adapter="snakesql",
database="environment",
autoCreate = 1,

)
cursor = connection.cursor()

import web.environment
driver = web.environment.driver(

name=’testEnv’,
storage=’database’,
cursor=cursor,

)
if not driver.completeEnvironment():

driver.removeEnvironment(ignoreErrors=True)
driver.createEnvironment()
print "Environment created"

else:
print "Environment already complete"

connection.commit() # Save changes
connection.close() # Close the connection

If none or only some of the tables are present we drop all the existing tables (ignoring errors produced because of
missing tables) losing any information they contain and recreate all the tables. We also need to commit our changes to
the database so that they are saved usingconnection.commit() .

1.7.2 API Reference

The EnvironmentDriver object is used to manipulate the environment. It is obtained from thedriver()
method of theweb.environment module.

driver (storage,[name=”], [**params])
Used to return anEnvironmentDriver object.

storageThe storage driver to be used in the environment. Currently can only be’database’ .

nameThe name of the environment (used to prepend database tables ifstorageis ’database’)

108 Chapter 1. Web Modules

**paramsAny other parameters needed by theEnvironmentDriver object. For example ifstorage is
’database’ then cursor should also be specified as a valid cursor to the database in which the en-
vironment exists.

classEnvironmentDriver
EnvironmentDriver objects have the following methods:

completeEnvironment ()
ReturnsTrue if all auth and session tables exist,False otherwise. XXX Does not check the structure of
the tables.

createEnvironment ()
Creates all the auth and session tables, raising an error if any already exist.

removeEnvironment ([ignoreErrors=False])
Removes all the auth and session tables, raising an error if any don’t exist unlessignoreErrorsis True .

1.8 web.form — Construction of persistant forms/wizards for HTML in-
terfaces

Theweb.form module a series of classes and functions for generating and managing persistant HTML forms. As
well as basic fields such asinput or select fields, the module provides fields for dates, email addresses, URLs
and more. It also supports fields which return Python types, for example the Integer Select field or the Date field.

The web.form module also provides a mechanism for automatically handling invalid data and requesting more
information from the user.

1.8.1 Introduction

Theweb.form module has three modules containg different types of fields.web.form.field.basic provides
the standard HTML fields such asinput boxes orCheckBoxGroup s. web.form.field.typed provides fields
which return typed data such as Dates andweb.form.field.extra provides fields such as email and URL.

The code below will create anInteger field:

>>> import web.form, web.form.field.basic as field
>>> input = field.Input(name=’box’, default=’Default Text’,
... description=’Input Box:’, size=14, maxlength=25)
>>> print input.html()
<input type="text" name="box" size="14" maxlength="25" value="Default Text">

This on its own doesn’t seem overly useful but when combined with aweb.form.Form it becomes much more
useful. Following on from the previous example:

1.8. web.form — Construction of persistant forms/wizards for HTML interfaces 109

>>> exampleForm = web.form.Form(name=’form’, action=’forms.py’, method=’get’)
>>> exampleForm.addField(input)
>>> exampleForm.addAction(’Submit’)
>>> print exampleForm.html()
<form name="form" class="lemon" action="forms.py" method="get" enctype="">
<table border="0">
<tr><td><table border="0" cellpadding="3" cellspacing="0">
<tr>

<td valign="top">Input Box: </td>
<td> </td>
<td valign="top"><input type="text" name="input" size="14" maxlength="25" valu

e="Default Text"></td>
<td valign="top"></td>

</tr>
</table>
</td></tr>

</table>
</form>

In this case a properly formatted form is produced with labels for the fields.

Now in order for this to be useful a mechanism is needed for displaying the form data to the user, validating it,
re-displaying it with an error message if it is invalid and then finally accessing the data.

To populate the form with data we use theweb.cgi object which acts like a dictionary of submitted CGI variables.
If the form is submitted then at least one cgi variable will be avaible so iflen(web.cgi)>0 then we know someone
is trying to submit form data.

>>> if len(web.cgi) > 0:
... exampleForm.populate(web.cgi)

The form will now be populated with the information from theweb.cgi object. The values submitted to each field
may not be of the appropriate types so in order to make sure the information is valid we call thevalid() method of
the form to validate each field.

Again, following on from the previous example:

>>> if exampleForm.valid():
... print "It validated"
...
>>> else:
... print exampleForm.html()
...

If the information entered into the form is not validexampleForm.html() will return a form with the error marked
on so that the user can change the field and resubmit the form. Once every field in the form is valid then we can go
ahead and access the fields varaibles by their names like this:

110 Chapter 1. Web Modules

>>> exampleForm[’box’]
<Input Class. Name=’box’>
>>> exampleForm[’box’].value
’Default Text’

If a valid value had been submitted thenexampleForm[’box’].value would have returned that value rather
than the default.

1.8.2 Form Objects

classForm([name=’form’][, action=”][, method=’get’][, stickyData=][, enctype=”][, populate=None][, in-
cludeName=None])

Form objects have the following class structure and methods:

valid ()
tries to vaildate each field. If any of them contain invalid values returnsFalse otherwise returnsTrue

populate (form)
Populates each field from the value ofform. formshould be aweb.cgi object.

addField (field)
Add the field objectfield to the form.

addAction (name)
Add a Submit button namednameto the form. XXX May remove this function in future versions.

field (name)
Returns the field object namedname

getitem (name)
Returns the field object namedname

remove (name)
Remove the field namednamefrom the form

has key (name)
ReturnsTrue if the form has a field namedname, False otherwise

values ()
Return a tuple containing the values of the form fields in the order they were added. The values of the field
can be accessed from thevalue attribute of each item in the tuple.

keys ()
Return a tuple containing the names of the form fields in the order they were added

dict ()
Return a dictionary containing the names and values of the fields askey:value pairs

items ()
Return a tuple containing 2-tuples of(key, value) pairs where thekeyis the field name and thevalueis
the field object.

html ()
Return an HTML representation of the form

hidden ()
Return the form as hidden fields

frozen ([action=None])
Return the form as HTML with the values displayed as text and hidden fields instead of the fields. Ifaction
is specified a Submit button with the value specified byaction is added to the form

1.8. web.form — Construction of persistant forms/wizards for HTML interfaces 111

templateDict ()
Return the form as a dictionary suitable for use in a template.

The keys include: ’name’ ,’action’ ,’method’ ,’enctype’ ,’fields’ ,’actions’ and
’stickyData’ . ’fields’ is the key to an array dictionarys containg field information with the keys:
’name’ ,’error’ ,’description’ ,’value’ and ’html’ . ’stickyData’ is the stickyData as
hidden fields.

1.8.3 Creating Custom Forms

Rather than creating aweb.form.Form object and adding fields, it is also possible to define a custom form object.
This has the advantage that you can easily override the default behaviour of theweb.form.Form object so that
your form will display information in a different way. More information on customisingweb.form.Form objects
is given later on. The code below creates exactly the same form object as we created in the example above.

>>> class ExampleForm(web.form.Form):
... def setup(self):
... self.addField(
... field.Input(
... name=’box’,
... default=’Default Text’,
... description=’Input Box:’,
... size=14, maxlength=25
...)
...)
... self.addAction(’Submit’)
...
>>> exampleForm = ExampleForm(name=’form’, action=’forms.py’, method=’get’)

1.8.4 Fields

This section provides the full class reference for theweb.form module field classes.

The fields in theweb.form.field.basic are all designed to provide a functional interface to manipulate standard
HTML form fields. Fields in theweb.form.field.typed are used to return a typed object such as an Integer or
a Date. Fields in theweb.form.field.extra provide extra functionality. For example theEmail field checks
that the string entered could be a valid email address.

All the fields have the parameters, methods and attributes specified in theField class as well as the parameters,
methods and attributes documented in their own section. TheField should not be used in code. It is simply designed
to be a base class for all the other classes to be derived from.

web.form.field.basic — Various fields for use with web.form

classField (name,[default=”],[description=”][,error=”][,required=False][,requiredError=’Please enter a
value’])

basic.Field is an abstract class from which other classes are derived.

nameThe name of the field.

defaultThe default value of the field

descriptionA description of the field for use as part of a form

errorThe error message to initialise the field with

112 Chapter 1. Web Modules

requiredIf True a value must be entered. A string’’ is not a valid value. Ifrequired=True defaultcannot be
’’ .

requiredErrorA string containing the error to display if no value is entered.

populate (values)
Populates the field from aweb.cgi object.

valuesTheweb.cgi object to use.

valid ([value=None])
Populates the field from aweb.cgi object.

valueThe value to validate. Ifvalue=None then the current value of the field if validated instead. Returns
True or False .

html ()
Returns the object as an HTML string

frozen ()
Returns a string representation of the field

hidden ()
Returns the field as a hidden field

error ()
Returns the contents of the error string

setError (error)
Set the error of the field toerror

description ()
Returns the contents of the description string

name()
Returns the name of the field

value
The value of the field

classInput (name[,default=”][,description=”][,error=”][,required=False][,requiredError=’Please enter a
value’],[,size=40][,maxlength=None])

size

Size of the filed. The number of characters that are displayed

maxlengthThe maximum number of characters which can be entered into the field.None means there is no
limit.

classPassword (name[,default=”][,description=”][,error=”][,required=False][,requiredError=’Please enter
a value’],[,size=40][,maxlength=None])

size

Size of the filed. The number of characters that are displayed

maxlengthThe maximum number of characters which can be entered into the field.None means there is no
limit.

classHidden (name,[default=”],[description=”][,error=”][,required=False][,requiredError=’Please enter a
value’])

Note: Although you can, it makes little sense to set or read an error on a hidden field.

classCheckbox (name[,default=”][,description=”][,error=”][,required=False][,requiredError=’Please enter
a value’])

default

The default can only be’on’ or ’’

classSubmit (name[,default=”][,description=”][,error=”][,required=False][,requiredError=’Please enter a
value’])

Creates a submit button. Same methods and attributes asbasic.Field

classReset (name[,default=”][,description=”][,error=”][,required=False][,requiredError=’Please enter a
value’])

Creates a reset button. Same methods and attributes asbasic.Field

1.8. web.form — Construction of persistant forms/wizards for HTML interfaces 113

classTextArea (name[,default=”][,description=”][,error=”][,required=False][,requiredError=’Please enter
a value’][,cols=None][,rows=None])

cols

The number of columns in the field. (The number of characters that are displayed in each row).None
means not set.

rowsThe number of rows of text on display before the box has to scroll.None means not set.

classFile (name[,default=”],[description=”][,error=”][,required=False][,requiredError=’Please enter a
value’])

For file uploads.

Note: If a web.form.Form object has aweb.form.field.basic.File field, themethodparameter
should be set to’POST’ and theenctypeshould be set to’multipart/form-data’ for file uploads to
work.

classSelect (name,options[,default=”][,description=”][,error=”][,required=False][,requiredError=’Please
choose an option’])

options

Should be a list or tuple of[value, label] pairs. Eachvalue or label should be a string. Each
value should be unique.

defaultA string equal to thevalue of the default option.

classRadioGroup (name,options[,default=”][,description=”][,error=”][,required=False
][,requiredError=’Please choose an option’][,align=’horiz’][,cols=4])

options

Should be a list or tuple of[value, label] pairs. Eachvalue or label should be a string. Each
value should be unique.

defaultA string equal to thevalue of the default option.

alignCan be’horiz’ , ’vert’ or ’table’

classMenu(name,options[,default=[]][,description=”][,error=”][,required=False][,requiredError=’Please
choose at least one option’])

options

Should be a list or tuple of[value, label] pairs. Eachvalue or label should be a string. Each
value should be unique.

defaultA list or tuple of strings for all the default values to be selected.

value
The value of the field returned as a List.

classCheckBoxGroup (name,options[,default=[]][,description=”][,error=”][,required=False
][,requiredError=’Please choose at least one option’][,align=’vert’][,cols=4])

options

Should be a list or tuple of[value, label] pairs. Eachvalue or label should be a string. Each
value should be unique.

defaultA list or tuple of strings for all the default values to be selected.

alignCan be’horiz’ , ’vert’ or ’table’

colsIf align=’table’ , colsshould be an integer specifying the number of columns in the table.

value
The value of the field returned as a List.

web.form.field.typed — Typed fields for use with web.form and web.database.object

This module provides fields to support the following data types:

114 Chapter 1. Web Modules

Type Description
Char A character field taking strings of length 1
String A string field taking strings of up to 255 characters
Text A text field for storing large amounts of text (up to 16k characters)
Integer An integer field taking any integer that is a valid Python integer (butnot long)
Float A float field taking Python float values
Date A date field. Takes values in the form of pythondatetime objects. Only stores days, months and years, any other information is trunkated. Dates from0001-01-01 to 9999-12-31 .
Time A time field. Takes values in the form of pythondatetime objects. Only stores hours, minutes and seconds, any other information is trunkated.
DateTime A datetime field. Takes values in the form of pythondatetime objects. Only stores days, months, years, hours, minutes and seconds, any other information is trunkated.

Note: TheseField objects correspond to the fields used by theweb.database module. There is a reason for this;
theColumn objects in theweb.database.object module are each derived from aweb.form.field.typed
Field . This means that columns from aweb.database.object.Row are also valid form fields. This is used
in theweb.database.object classes to automatically generate and validate forms which can be used seamlessly
and easily submit and edit data in a database.

Each of the data types listed below has three types of field specified:

Free Allows the user to specify any value

Select Allows the user to choose one value from a number of values specified

CheckBoxGroup Allows the user to choose more than one option

The typed field classes have the same interface as their basic equivalents except that:

1. The Select and CheckBoxGroup classes take lists of their respective data types rather thanvalue, label pairs.

2. The fields return their repsective Python object (or list of objects) when their.value attribute is called.

All the fields can either take their respective data type or the valueNone as possible values for the field. The
only complications are theweb.form.field.typed.String , web.form.field.typed.Text and class-
web.form.field.typed.Char objects.

If someone enters no information into a String field there is a choice of whether to treat this
as a null string ’’ or a NULL value None. To specify which behaviour you would like the
web.form.field.typed.String object accepts the parametertreatNullStringAsNonewhich takes a default
value ofTrue . The web.form.field.typed.Char andweb.form.field.typed.Text fields also ac-
cept thetreatNullStringAsNoneparameter.

The web.form.field.typed.Integer field also takes the parametersmin andmax to specify the minimum
and maximum values and the parametersminError andmaxError to specify the errors to display if the values are
outside the specified minimum and maximum.

One more complication is how to displayNone values in theweb.form.field.typed.StringSelect and
classweb.form.field.typed.CharSelect objects. If you choose the string’None’ to display it how do you distinguish
None from ’None’ ? Any value you choose could be confused with another string. The solution is to set a string
value to dispalyNone that isn’t another value in theoptions. You can set this using thedisplayNoneAsparameter.
None values for the other Select fields are just displayed as’’ .

web.form.field.extra — Extra fields for use with web.form

This module provides two classes:URL and Email . Both these classes behave exactly the same as the
web.form.field.typed.String class except that they only accept as values strings that are URLs or Emails
respectively.

For example:

1.8. web.form — Construction of persistant forms/wizards for HTML interfaces 115

>>> import web.form.field.extra as field
>>> email = field.Email(name=’emailField’)
>>> print email.html()
<input type="text" name="emailField" value=""> <small>eg. james@example.com</small>
>>> email.value = ’this is not an email address’
>>> email.valid()
0
>>> print email.error()
Please enter a valid email address. eg. james@example.com
>>> email.setError(’’)
>>> email.value = ’james@example.com’
>>> email.valid()
1

1.8.5 Basic Fields Example

As an example showing the internal workings of the the form module.

#!/usr/bin/env python

"Forms example."

import sys, re, os
sys.path.append(’../’)
sys.path.append(’../../’)

import web.error; web.error.handle()
import web, web.form, web.form.field.basic, web.util

class ExampleForm(web.form.Form):

def setup(self):
self.addField(web.form.field.basic.Input(’input’, ’Default Text’, ’Input Box:’, size=14, maxlength=25))
self.addField(web.form.field.basic.Password(’password’, ’Default Text’, ’Password Field:’,size=14, maxlength=25))
self.addField(web.form.field.basic.Hidden(’hiddenfield’, ’Default Text’,’Hidden Field’)) # XXX
self.addField(web.form.field.basic.CheckBox(’checkbox’, ’DefaultValue’, ’Checkbox:’))
self.addField(web.form.field.basic.Button(’button’, ’Button Label’, ’Button:’))
self.addField(web.form.field.basic.TextArea(’textarea’, ’Text Area\n-----\nText’, ’Text Area:’))
self.addField(web.form.field.basic.RadioGroup(’radiogroup’, [(’1’,’one’),(’2’,’two’),(’3’,’three’)] , ’3’ , ’Radio Group:’, align="table", cols=2))
self.addField(web.form.field.basic.Menu(’menu’, [(’1’,’one’),(’2’,’two’),(’3’,’three’)], [’2’,’3’], ’Menu’, size=3, required=False))
self.addField(web.form.field.basic.Select(’select’, [(’1’,’one’),(’2’,’two’),(’3’,’three’)], ’3’, ’Select’, required=True))
self.addField(web.form.field.basic.CheckBoxGroup(’checkboxgroup’, [(’1’,’one’),(’2’,’two’),(’3’,’three’)], [’1’,’2’], ’Check Box Group:’, required=True))
self.addField(web.form.field.basic.Reset(’reset’, ’Reset’, ’Reset Button:’))
self.addField(web.form.field.basic.Submit(’submit’, ’Submit’, ’Submit Button (normally not used):’))

The preffered way of adding submit buttons is as actions so Submit buttons are normally not used.
self.addAction(’Validate This Form’)

def valid(self):
if web.form.Form.valid(self):

validates = True
if self.get(’input’).value == ’Default Text’:

self.get(’input’).setError("ERROR: You must change the text in the input box.")
validates = False

return validates

116 Chapter 1. Web Modules

else:
return False

Print the HTTP Header
print web.header(’text/html’)

Create a form

exampleForm = ExampleForm(’form’, os.environ[’SCRIPT_NAME’], ’get’)

if len(web.cgi) > 0: # Form submitted
Populate form with the values from get.

Prepare form values:
values = {}

for k in web.cgi.keys():
values[k] = [k,str(web.cgi[k])]
if exampleForm.has_key(k):

values[k].append(exampleForm[k].value)
values[k].append(exampleForm[k].error())

exampleForm.populate(web.cgi)

for k in web.cgi.keys():
if exampleForm.has_key(k):

values[k].append(exampleForm[k].value)
values[k].append(exampleForm[k].error())

if exampleForm.valid():
for k in web.cgi.keys():

if exampleForm.has_key(k):
values[k].append(exampleForm[k].value)
values[k].append(exampleForm[k].error())

valueText = ’’
for k in exampleForm.keys():

if web.cgi.has_key(k):
valueText += ’%s
’%values[k][0]
valueText += ’<table border="0">’
valueText += ’<tr><td>Create</td><td>%s</td></tr>’%web.encode(repr(values[k][2]))
valueText += ’<tr><td>Error</td><td>%s</td></tr>’%web.encode(repr(values[k][3]))
valueText += ’<tr><td>Populate</td><td>%s</td></tr>’%web.encode(repr(values[k][4]))
valueText += ’<tr><td>Error</td><td>%s</td></tr>’%web.encode(repr(values[k][5]))
valueText += ’<tr><td>Validate</td><td>%s</td></tr>’%web.encode(repr(values[k][6]))
valueText += ’<tr><td>Error</td><td>%s</td></tr>’%web.encode(repr(values[k][7]))
valueText += ’</table>

’

print "<html><head><title>Form Test - Validated</title></head><body>\n<h1>It Validated!</h1>%s\n<hr>\n<h2>Values</h2>%s</body></html>"%(exampleForm.frozen(), valueText)
else:

for k in web.cgi.keys():
if exampleForm.has_key(k):

values[k].append(exampleForm[k].value)
values[k].append(exampleForm[k].error())

valueText = ’’
for k in exampleForm.keys():

if web.cgi.has_key(k):
valueText += ’%s
’%values[k][0]
valueText += ’<table border="0">’
valueText += ’<tr><td>Create</td><td>%s</td></tr>’%web.encode(repr(values[k][2]))
valueText += ’<tr><td>Error</td><td>%s</td></tr>’%web.encode(repr(values[k][3]))

1.8. web.form — Construction of persistant forms/wizards for HTML interfaces 117

valueText += ’<tr><td>Populate</td><td>%s</td></tr>’%web.encode(repr(values[k][4]))
valueText += ’<tr><td>Error</td><td>%s</td></tr>’%web.encode(repr(values[k][5]))
valueText += ’<tr><td>Validate</td><td>%s</td></tr>’%web.encode(repr(values[k][6]))
valueText += ’<tr><td>Error</td><td>%s</td></tr>’%web.encode(repr(values[k][7]))
valueText += ’</table>

’

print "<html><head><title>Form Test - Errors</title></head><body>\n<h1>Please Check Entries</h1>%s\n<hr>\n<h2>Values</h2>%s</body></html>"%(exampleForm.html(), valueText)
else:

print "<html><head><title>Form Test</title></head><body>\n<h1>Welcome Please Fill In The Form</h1>%s\n<hr></body></html>"%(exampleForm.html())

You can test this example by starting the test webserver in ‘scripts/webserver.py’ and visiting
http://localhost:8080/doc/src/lib/webserver-web-form.py on your local machine.

1.8.6 Typed Fields Example

As an example showing the how to use the typed fields, not the use ofNone values.

#!/usr/bin/env python

"Forms example."

import sys, re, os
sys.path.append(’../’)
sys.path.append(’../../’)
import web.error; web.error.handle(handler=’browser’, output=’debug’, format=’html’)
import web, web.form, web.form.field.basic, web.util
import web.form.field.typed

class ExampleForm(web.form.Form):

def setup(self):
self.add(

field=’input’,
name=’input’,
default=’Default Text’,
description=’Input Box:’,
size=14,
maxlength=25

)
self.addField(web.form.field.typed.String(’string’, default=None, treatNullStringAsNone=False))
self.addField(web.form.field.typed.String(’string None’, default=None, treatNullStringAsNone=True))
self.addField(web.form.field.typed.Bool(’bool’, required=True))
self.addField(web.form.field.typed.Bool(’bool None’, default=None))
self.addField(web.form.field.typed.Text(’text’, default=None, treatNullStringAsNone=False))
self.addField(web.form.field.typed.Text(’text None’, default=None, treatNullStringAsNone=True))
self.addField(web.form.field.typed.Integer(’integer’, default=None, required=True))
self.addField(web.form.field.typed.DateTime(’datetime’, default=None, required=True))
self.addField(web.form.field.typed.StringSelect(’stringselect’, options=[None, ’String’], displayNoneAs=’’))
self.addField(web.form.field.typed.FloatSelect(’floatselect’, options=[None, 1]))
self.addField(web.form.field.typed.FloatCheckBoxGroup(’floatcheckboxgroup’, options=[1,5.89]))
The preffered way of adding submit buttons is as actions so Submit buttons are normally not used.
self.addAction(’Validate This Form’)

def valid(self):
if web.form.Form.valid(self):

validates = True
if self.get(’input’).value == ’Default Text’:

self.get(’input’).setError("ERROR: You must change the text in the input box.")

118 Chapter 1. Web Modules

validates = False
return validates

else:
return False

Print the HTTP Header
print web.header(’text/html’)

Create a form
exampleForm = ExampleForm(’form’, ’webserver-web-form-typed.py’, ’get’)

if len(web.cgi) > 0: # Form submitted
Populate form with the values from get.

Prepare form values:
values = {}

for k in web.cgi.keys():
values[k] = [k,str(web.cgi[k])]
if exampleForm.has_key(k):

values[k].append(exampleForm[k].value)
values[k].append(exampleForm[k].error())

exampleForm.populate(web.cgi)

for k in web.cgi.keys():
if exampleForm.has_key(k):

values[k].append(exampleForm[k].value)
values[k].append(exampleForm[k].error())

if exampleForm.valid():
for k in web.cgi.keys():

if exampleForm.has_key(k):
values[k].append(exampleForm[k].value)
values[k].append(exampleForm[k].error())

valueText = ’’
for k in exampleForm.keys():

if web.cgi.has_key(k):
valueText += ’%s
’%values[k][0]
valueText += ’<table border="0">’
valueText += ’<tr><td>Create</td><td>%s</td></tr>’%web.encode(repr(values[k][2]))
valueText += ’<tr><td>Error</td><td>%s</td></tr>’%web.encode(repr(values[k][3]))
valueText += ’<tr><td>Populate</td><td>%s</td></tr>’%web.encode(repr(values[k][4]))
valueText += ’<tr><td>Error</td><td>%s</td></tr>’%web.encode(repr(values[k][5]))
valueText += ’<tr><td>Validate</td><td>%s</td></tr>’%web.encode(repr(values[k][6]))
valueText += ’<tr><td>Error</td><td>%s</td></tr>’%web.encode(repr(values[k][7]))
valueText += ’</table>

’

print """<html><head><title>Form Test - Validated</title></head><body>\n<h1>It Validated!</h1>
%s\n<hr>\n<h2>Values</h2>%s</body></html>"""%(exampleForm.frozen(), valueText)

else:
for k in web.cgi.keys():

if exampleForm.has_key(k):
values[k].append(exampleForm[k].value)
values[k].append(exampleForm[k].error())

valueText = ’’
for k in exampleForm.keys():

if web.cgi.has_key(k):
valueText += ’%s
’%values[k][0]
valueText += ’<table border="0">’
valueText += ’<tr><td>Create</td><td>%s</td></tr>’%web.encode(repr(values[k][2]))

1.8. web.form — Construction of persistant forms/wizards for HTML interfaces 119

valueText += ’<tr><td>Error</td><td>%s</td></tr>’%web.encode(repr(values[k][3]))
valueText += ’<tr><td>Populate</td><td>%s</td></tr>’%web.encode(repr(values[k][4]))
valueText += ’<tr><td>Error</td><td>%s</td></tr>’%web.encode(repr(values[k][5]))
valueText += ’<tr><td>Validate</td><td>%s</td></tr>’%web.encode(repr(values[k][6]))
valueText += ’<tr><td>Error</td><td>%s</td></tr>’%web.encode(repr(values[k][7]))
valueText += ’</table>

’

print """<html><head><title>Form Test - Errors</title></head><body>\n
<h1>Please Check Entries</h1>%s\n<hr>\n<h2>Values</h2>
%s</body></html>"""%(exampleForm.html(), valueText)

else:

print """<html><head><title>Form Test</title></head><body>\n
<h1>Welcome Please Fill In The Form</h1>%s\n<hr>
</body></html>"""%(exampleForm.html())

You can test this example by starting the test webserver in ‘scripts/webserver.py’ and visiting
http://localhost:8080/doc/src/lib/webserver-web-form-typed.py on your local machine.

1.9 web.image — Create and manipulate graphics including JPG, PNG,
PDF, PS using PIL

Theweb.image currently contains one sub package for creating simple graphs from data.

1.9.1 web.image.graph — Create graphs

html2tuple (htmlColorCode)
Returns a colour tuple of(R, G, B) in hex from an HTML colour code such as#ffffff . The return value
from this function can be used to specify colours in thegraph module.

htmlColorCodeThe html colour code to convert.

Theweb.image.graph module is used to create PNG or similar graphs for use on web pages.

1.9.2 Command Line Example

Currently the module only works with positive values for the axes and requires the presence of the ‘Arial.ttf’ font
by default. This modules should be considered an early implementation. You should ensure the values you choose
produce a nice looking graph because there is very little error checking and the values you choose may not result in
the graph displaying correctly.

Here as an example showing the useage of the three main classes:

#!/usr/bin/env python

import sys; sys.path.append(’../../../’) # show python where the modules are
import web.image.graph

graph = web.image.graph.ScatterGraph(
xAxis={’max’:200, ’unit’:20, ’label’:’Value 1 /cmˆ2’},
yAxis={’max’:200, ’unit’:20, ’label’:’Value 2 /cmˆ2’},
points=[(0,0),(13,68),(200,200)],
size=(500, 300),
bgColor=(240,240,240),
title=’Test Graph’

120 Chapter 1. Web Modules

)
graph.save(’scatter.ps’)

graph = web.image.graph.BarGraph(
xAxis={’max’:200, ’unit’:20, ’label’:’Value 1 /cmˆ2’},
yAxis={’max’:200, ’unit’:20, ’label’:’Value 2 /cmˆ2’},
points=[10,20,40,50,200,89, 30, 60, 70, 60],
size=(500, 300),
bgColor=(240,240,240),
title=’Test Graph’

)
graph.save(’bar.png’)

graph = web.image.graph.PieChart(
points={

’food’:10,
’numbers’:20,
’numbers2’:30,

},
size=(500, 300),
bgColor=(240,240,240),
title=’Test Graph’

)
graph.save(’pie.jpg’)

graph = web.image.graph.BarGraph(
xAxis={’max’:200, ’unit’:20, ’label’:’Value 1 /cmˆ2’},
yAxis={’max’:200, ’unit’:20, ’label’:’Value 2 /cmˆ2’},
points=[10,20,40,50,200,89, 30, 60, 70, 60],
size=(500, 300),
bgColor=web.image.html2tuple(’#F0F0F0’),
title=’Test Graph’

)
fp = open(’string.pdf’,’wb’)
fp.write(graph.toString(’pdf’))
fp.close()

Note: The format of the image saved depends on the extension used. Currently supported are’.png’ , ’.jpg’ ,
’.ps’ . JPEG is a lossy compression method and so the graphics produced as JPEGs may not be as good quality as
the others. The receommended format to use is’.png’ . ust save your files with a.png extension to have PNG
output.

1.9.3 Webserver Example

It is useful to be able to produce graphs in a script and then return them. The example below generates a graph. It can
be used in an HTML tage like this .

#!/usr/bin/env python

"""Graph Generation Example.
"""

show python where the web modules are
import sys, os
sys.path.append(’../’)
sys.path.append(’../../../’)

1.9. web.image — Create and manipulate graphics including JPG, PNG, PDF, PS using PIL 121

import web.error; web.error.handle()
import web.image, web.image.graph

graph = web.image.graph.BarGraph(
xAxis={’max’:10, ’unit’:1, ’label’:’Days Since Send’},
yAxis={’max’:10, ’unit’:1, ’label’:’Number of Page Views’},
points=[1,5,7,8,4,3,6,8,0,1],
size=(500, 300),
bgColor=web.image.html2tuple(’#ffffff’),
barColor=web.image.html2tuple(’#000080’),
title=’Page View Rate For Newsletter’,

)
print web.header(’image/png’), graph.toString(’png’)

You can test this example by starting the test webserver in ‘scripts/webserver.py’ and visiting
http://localhost:8080/doc/src/lib/webserver-web-image-graph.py on your local machine. You will need the
Arial.ttf font somewhere on your system where Python can find it.

1.10 web.mail — Simple function to send email using email

The mail module provides a simple functionsend() which can be used to send emails as shown in the example
below:

import web.mail
web.mail.send(

msg = "Hello James!",
to = ’james@example.com’,
replyName = ’James Gardner’,
replyEmail = ’james@example.com’,
subject = ’Test Email’,
sendmail = ’/usr/bin/sendmail’,
method = ’sendmail’

)

To send the same email via SMTP instead of using ‘Sendmail’ you would use:

import web.mail
web.mail.send(

msg = "Hello James!",
to = ’james@example.com’,
replyName = ’James Gardner’,
replyEmail = ’james@example.com’,
subject = ’Test Email’,
smtp = ’smtp.ntlworld.com’,
method = ’smtp’

)

If you get an error likesocket.error: (10060, ’Operation timed out’) it is likely that the SMTP
address you specified either doesn’t exist or will not give you access.

Function Definition:

mail (msg, to,[subject=”], [method], [smtp], [sendmail], [blind], [reply], [replyName], [replyEmail], [type
])

msg

122 Chapter 1. Web Modules

Text of the message

toA list of recipient addresses in the form: addr@addr.com separated by commas

subjectEmail subject line

methodDescribes which method to use to send the email. Can be’smtp’ or ’sendmail’ . Only needs to be
specified if bothsmtp andsendmail are specified otherwise the method that is defined is used.

smtpSMTP server address

sendmailSendmail path

blindTrue if recipients are to be blocked from seeing who else the email was sent to.

replyNameThe name of the person sending the email.

replyEmailThe address of the person sending the email.

replyThe name and address of the person sending the email in the form:"sender name
<addr@example.com>" . Should only be specified ifreplyNameandreplyEmailare not specified.

The module also provides a methodbuildReply() which can be used to put the name and email address
into the format required for thereplyparameter of thesend() method:

>>> import web.mail
>>> web.mail.buildReply(’James Gardner, ’james@example.com’)
James Gardner <james@example.com>

typeThe second part of the content-type, eg’plain’ for a plain text email,’html’ for an HTML email.

1.10.1 Example

Below is an example demonstrating some of the features which you can use to test the module:

#!/usr/bin/env python

"Test program to send mail to recipients."
import sys; sys.path.append(’../../../’) # show python where the modules are

import web.mail
testAddr = raw_input(’Email address 1 to recieve tests (will receive 6 emails): ’)
testAddr2 = raw_input(’Email address 2 to recieve tests (will receive 2 emails): ’)
if raw_input(’Run the 6 SMTP tests: [y/n] ’) == ’y’:

smtp = raw_input(’SMTP server address: ’)
print "Running SMTP Test...."
counter = 1
for blind in [True, False]:

for to in [testAddr, [testAddr], [testAddr, testAddr2]]:
web.mail.send(

msg="Hello User!\n\nBlind: " + str(blind),
to=to,
reply=web.mail.buildReply(’web.mail Test’,testAddr),
subject="SMTP Test "+ str(counter),
smtp=smtp,
blind=blind,
method=’smtp’

)
print "Sent message %s."%counter
counter += 1

print "Done... check your mail!\n"

1.10. web.mail — Simple function to send email using email 123

if raw_input(’Run the 6 sendmail tests: [y/n] ’) == ’y’:
sendmail = raw_input("Sendmail Path (usually /usr/lib/sendmail): ")
print "Running Sendmail Test...."
counter = 1
for blind in [True, False]:

for to in [testAddr, [testAddr], [testAddr, testAddr2]]:
web.mail.send(

msg="Hello User!\n\nBlind: " + str(blind),
to=to,
reply=web.mail.buildReply(’web.mail Test’,testAddr),
subject="Sendmail Test "+ str(counter),
sendmail=sendmail,
blind=blind,
method=’sendmail’

)
print "Sent message %s."%counter
counter += 1

print "Done... check your mail!"

See Also:

email Module Documentation
(http://www.python.org/doc/current/lib/module-email.html)

The email module distributed with Python has a much broader API for constructing emails and should be
consulted if you plan to anything complicated such as emailing attachements.

1.11 web.session — Persistent storage of sessions and automatic
cookie handling

The session module is designed to provide the ability to manage sessions to allow data to persist between HTTP
requests. It is not designed to any authorisation features theweb.auth is for that purpose.

1.11.1 Background Information

Note: This section is meant as a guide for beginners and can be safely skipped if you already understand the principles
of session handling in a multi-application environment.

The HTTP Protocol is Stateless

When discussing sessions the comment ”The HTTP protocol is a stateless protocol, and the Internet is a stateless
development environment” is often used. This simply means that the HyperText Transfer Protocol that is the backbone
of the Web is unable to retain a memory of the identity of each client that connects to a Web site and therefore
treats each request for a Web page as a unique and independent connection, with no relationship whatsoever to the
connections that preceded it.

For viewing statically generated pages the stateless nature of the HTTP protocol is not usually a problem because the
page you view will be the same no matter what previous operations you had performed. However for applications such
as shopping carts which accumulate information as you shop it is extremely important to know what has happened
previously, for example what you have in your basket. What is needed for these applications is a way to ”maintain
state” allowing connections to be tracked so that the application can respond to a request based on what has previously
taken place.

124 Chapter 1. Web Modules

Session IDs

There are two main ways in which applications can recognise a user, both of which involve identifying the connection
using a short string known as a session ID.

In the first method every URL on a web page if modified with the session ID on the end so that whenever a user clicks
on a link the application is aware of which user is requesting a page. One drawback of this approach is that the session
ID can easily be read as it will appear in the address bar of your browser so that a malicious onlooker could read the
session ID and type the URL into another computer. The application would think that both users were the same person
because both would be using the same session ID.

The second method involves cookies. A cookie is a simple text file stored by your browser which contains
key:value pairs of text. When you request a web page, if your browser has a cookie registered for that domain it
sends the information to the web server before retrieving the page. The web browser can then react to the information
in the cookie before returning the page. If a session ID is stored in a cookie then the application can read the session
ID and therefore keep track of your connection history. Using cookies in this way is more secure that appending a
session ID to a URL because only your web browser knows the cookie information and it cannot be read from your
address bar.

Information Storage

The next step is to use a session ID to store information. One option is to put information into hidden fields in forms
and append the information to URLs. This becomes difficult for large amounts of information. A much better way is
to store the information in a server based on which session ID is accessing the website which is what session handling
modules help with.

Multiple Applications

In a real world situation there might be many different applications storing information in a session store. If they
weren’t all carefully planned it would be easy for one application to over-write another’s information. One solution
might be to setup different session stores for each application but this would require tracking multiple session IDs. A
better approach is for the session application to provide a session store to each application but handle the creation and
expiry of the sessions collectively. This is exactly what theweb.session does.

The HTTP Protocol and Cookie Handling

One issue which can cause problems with applications is the way session modules send cookies. When writing a
normal CGI application which simply prints information to the client’s web browser you must send the HTTP header
information to the web browser before the main body of the web page. Once the browser receives two carriage return
characters\n\n it knows that the information that follows is a web page and not more HTTP headers. This is why
you always printContent-type: text/html\n\n before printing<html> etc .

The session handling module also prints HTTP headers to set cookie information and so it is important that the session
handling code appears before you send the\n\n characters to your browser otherwise the page may not display cor-
rectly. This is often hard to spot in application environments like modpython or the WSGI where header information
is separated from page content. If you have problems with the session code because pages are not displaying correctly
check the headers are being sent correctly.

Of course theweb.session module allows you to disable this automatic cookie header printing and handle the
cookie headers in the way your application wants. This is described in the sectionCustom Cookie Handling
later on in the documentation.

1.11. web.session — Persistent storage of sessions and automatic cookie handling 125

1.11.2 Session Module Overview

Theweb.session module provides two different objects to help users manage sessions. These are:

SessionManager These objects are used to handle creation, expiry, loading, validity checks and cleanup of ses-
sions, the handling of cookies and the creation of store objects.

SessionStore These are the objects used to set and retrieve the values being stored for the particular application.

To begin using the session store for your application you must perform the following steps:

1. Create a manager object and load an existing session or create a new session

2. Obtain an application store object

1.11.3 Creating a basic session environment

Theweb.session module is designed so that the data can be stored in ways using different drivers. Currently only a
database storage driver and file driver exist allowing auth information to be stored in any relational database supported
by theweb.database module or in a sirectory structure.

In this example we are using a database to store the auth and session information so we setup a database cursor named
cursor as described in the documentation for theweb.database module.

import web.database
connection = web.database.connect(adapter=’snakesql’, database=’test’, autoCreate=1)
cursor = connection.cursor()

Next we need to create the necessary tables which will store the session information. To do this we use the
SessionManager object.

manager = web.session.manager(driver=’database’, cursor=cursor)

If we haven’t already created the session tables we can do so like this:

if not manager.completeSessionEnvironment():
manager.removeSessionEnvironment(ignoreErrors=True)
manager.createSessionEnvironment()

Alternatively the session manager can also take theautoCreate=1parameter to automatically create the necessary
tables in exactly the way described above automatically.

If any of the tables are missing, this code removes all existing tables thereby destroying all the data they contain
(ignoring errors produced because of missing tables) and re-creates all the tables.

connection.commit()

Theconnection.commit() saves the changes to the database.

126 Chapter 1. Web Modules

web.session.manager() also takes a range of parameters such asexpireto set the length of time in seconds the
session is valid for orcookieto set the cookie options. The full list of options is listed in the API reference section but
the default values are usually adequate.

1.11.4 Loading a Session

If we are using cookies to store session IDs we use the code manager object to read the session ID of the current user
from the cookie using the manager object’scookieSessionID() method otherwise we obtain the session ID in
whichever way is appropriate for our application.

sessionID = manager.cookieSessionID()

Once a session ID is obtained we can load the session. The manager object’sload() method will attempt to load a
session from a session ID. IfsessionIDis not specified it will be obtained from a cookie. If the session is not valid or
does not exist the method returnsFalse and sets the error to the manager object’serror attribute.

If the session does not exist or has expired we need to create a new session usingcreate() . This will also auto-
matically send cookie headers to set the session ID unlesssession.create(sendCookieHeaders=False)
is used, in which case you can still print the headers manually usingsendCookieHeaders() .

if not manager.load(sessionID):
newSessionID = manager.create(sendCookieHeaders=False)
manager.sendCookieHeaders()

If you are using a CGI environment all this code can be simplified to just the following:

if not manager.load():
newSessionID = manager.create()

The load() method obtains a session ID automatically if not present andcreate() automatically sends the head-
ers.

1.11.5 Multiple Applications and Stores

Once the session is successfully loaded we can create a store object.

The web.session module supports using multiple applications within an environment. Each application has its
own session store and can only access values in its own store to avoid the risk of over-writing another application’s
data. This has the benefit of allowing applications to share the same session ID and cookie.

Application names can be a string made up of the charactersa-z , A-Z , 0-9 and- . . The application name must be
between 1 and 255 characters in length. The application names do not have to be the same as application names used
by theweb.auth module, although these are the most appropriate choices.

It is important you choose a name for your application which is unique in the environment you are using. For example
if you are also using theweb.auth module you should not use the application name’auth’ since theweb.auth
module used the application name’auth’ to store its values.

To access a store using thestore() method of the manager object you must specify an application name, for
example:

1.11. web.session — Persistent storage of sessions and automatic cookie handling 127

store = manager.store(’testApp’)

1.11.6 Using Stores

We can now use our store variable to set and retrieve values from ourtestApp application’s session store. Below is
a demonstration of the functional interface:

store = session.store(’testApp’)
>>> store.set(key=’first’,value=’This is the fist key to be set!’)
>>> print store.get(key=’first’)
This is the fist key to be set!
>>> print store.keys()
[’first’]
>>> store.delete(key=’first’)
>>> store.has_key(key=’first’)
0

Alternatively we can treat the store object as a dictionary:

>>> store[’first’] = ’This is the fist key to be set!’
>>> print store[’first’]
This is the fist key to be set!
>>> print store.keys()
[’first’]
>>> del store[’first’]
>>> store.has_key(’first’)
0

Both versions behave in exactly the same way and any Python value that can be pickled by thepickle module can
be set and retrieved from the store so you can store strings, numbers and even classes and all the information will be
available for each request until you remove it or the session expires.

One other useful method of the store object is theempty() method. This is used to remove all information from
an application’s session store. This is a better way of removing information than using the manager’sdestroy()
method sincedestroy() will also remove all the information from other application’s stores which might cause
those applications to crash if the store is currently being accessed.

1.11.7 Managing Sessions

The following sections describe more about the manager object and how it can be used to manage sessions.

Checking Session Existence or Validity

If for any reason you have an application which has run for a long time, it is possible that the session has expired since
the session was originally created or loaded.

To check if a session is still valid usemanager.valid() . Thevalid() method returnsTrue if the session is
valid, False otherwise and raises aSessionError if the session no longer exists.

128 Chapter 1. Web Modules

It is also conceivably possible that the session has been cleaned up and no longer exists. To check if a session exists
usemanager.exists() . Theexists() method returnsTrue if the session exists,False otherwise but makes
no comment on whether or not it is still valid or has expired.

Destroying Sessions

Once a session has expired the data cannot be accessed by the session module. If a user tries to access an expired
session, the session is destroyed immediately.

You can also manually destroy the session using thedestroy() method. However it is highly recommended that
you do not destroy sessions in this way as other applications may be using the session and my crash if during the
course of program execution the session information is removed. Instead you can use theempty() method of the
store instance to remove all store information for your application whilst leaving the session and other application’s
information safe:

store.empty()

If you do wish to destroy a session and understand the risks you can use:

manager.destroy(ignoreWarning=True)

failing to specify ignoreWarningas True will result in a SessionWarning being raised to inform you of the
potential dangers.

Cleaning Up Expired Sessions

Every time a session is loaded or created there is a certain probability (specified by thecleanupProbabiltyparameter of
theweb.session.manager() function) that the session module will look through all sessions to see which ones
have expired, removing session information and expired sessions as necessary. This means sessions are not necessarily
get destroyed when they expire.

Setting the cleanup parameter too high means unnecessary work is done checking expired session more than is needed.
Too low and data may persist for a long time meaning that it takes a long time to cleanup the sessions once the cleanup
process is finally begun.

System administrators can manually cleanup sessions using the manager instance’scleanup() method. Using the
method without parameters removes all expired sessions. The method also acceptsminandmaxto specify the range of
expiry times to cleanup. You can also cleanup sessions which have not yet expired but this is dangerous for the same
reasons destroying current sessions is and will raise aSessionWarning . To ignore the warning set the parameter
ignoreWarningto True .

Changing the Expire Time of a Session

You can change the expire time of a session usingmanager.setExpire() . The method takesexpireTimewhich
is the time you want the session to expire in seconds since the epoch (00:00:00 UTC, January 1, 1970) This is the
format returned bytime.time() . expireTimeis not the extra number of seconds to allow the session to exist for.

1.11. web.session — Persistent storage of sessions and automatic cookie handling 129

1.11.8 Custom Cookie Handling

To understand how cookies work you may want to first readThe HTTP Protocol and Cookie Handling
sub section of theBackground Information section of this documentation.

If you don’t want to have headers sent automatically when using thecreate() and destroy() methods
you can set thesendCookieHeadersparameter toFalse . In this case the header is instead appended to the
response headers attribute in the form of a tuple(type, info) where type is the header type eg
Set-Cookie and info is the header information.

To send the headers you can usesendCookieHeaders() to send all the headers. Once the headers are sent they
are appended to theresponse headers attribute for debugging purposes.

Alternatively you can retrieve the last header and turn it back into a usual HTTP header using this code:

cookieHeader = "%s: %s"%manager.response_headers[-1]

If you want to build your own cookie headers you can usesetCookieString() and
deleteCookieString() which return HTTP headers as strings suitable for printing directly.

Finally, cookies are read from theHTTP COOKIEenvironmental variable. If you wish to provide your own environ-
ment dictionary instead of the default (if for example you are using a WSGI application) you can read a cookie like
this:

sessionID = manager.cookieSessionID(environ=environ)

See the API documentation for more information.

1.11.9 Web Server Gateway Interface Middleware

A much more modular way of using theweb.session module functions and classes is to use them as Web Server
Gateway Interface Middleware. This is described in theweb.wsgi.session module documentation which also
includes an example.

1.11.10 Implementing a new Driver

To implement a new driver you need to create a new module in ‘web/session/drivers/’ with the name of the driver as
the file name and ‘.py’ as the extension.

The file should define two classes named in a similar way to the database driver classes, one of which implements the
checking, creation and removal if the driver environment and the other implements theweb.session module API
and inherits from the first class.

The ‘web/session/drivers/database.py’ can be used as an example. If you implement all the methods in the same
manner as the database driver and each method returns variables of the same type in the same order and raises the
same extensions you will have a valid driver.

Please forward any such drivers to the developers who may wish to include your driver if it is of a sufficiently high
standard and does not require any API changes to any of the other web modules.

1.11.11 Example

Here is a full example showing the creation of all the necessary objects and giving you full control over the session:

130 Chapter 1. Web Modules

#!/usr/bin/env python

show python where the modules are
import sys; sys.path.append(’../’); sys.path.append(’../../../’)
import web.error; web.error.enable()
import os, time
import web.database

Setup a database connection
connection = web.database.connect(

adapter="snakesql",
database="webserver-session",
autoCreate = 1,

)
cursor = connection.cursor()

Obtain a session manager the full way
import web.session
manager = web.session.manager(driver=’database’, cursor=cursor, autoCreate=1)
sessionID = manager.cookieSessionID()
if not manager.load(sessionID):

manager.create(sendCookieHeaders=False)
manager.sendCookieHeaders()

store = manager.store(’testApp’)

def printPage(title, url, link, url2, link2, data):
print """
<html>
<h1>%s</h1>
<p>%s</p>
<p>%s</p>
<p>%s</p>
</html>"""%(title, url, link, url2, link2, data)

Write a simple application the full way
if not manager.created:

if web.cgi.has_key(’destroy’) and web.cgi[’destroy’].value == ’True’:
manager.destroy(ignoreWarning=True, sendCookieHeaders=False)
manager.sendCookieHeaders()
print web.header(’text/html’)
printPage(

’Session Destroyed’,
os.environ[’SCRIPT_NAME’],
’Start Again’, ’’,’’,’’

)
else:

manager.setExpire(manager.expireTime+5, sendCookieHeaders=1)
print web.header(’text/html’)
data = []
data.append(’SessionID: ’ +manager.sessionID)
data.append(’Store Keys: ’+str(store.keys()))
data.append(’Store App: ’+store.app)
data.append(’Variable1: ’+str(store[’Variable1’]))
data.append(’ExpireTime: ’+str(manager.expireTime))
printPage(

’Welcome back’,
os.environ[’SCRIPT_NAME’],
’Visit Again’,

1.11. web.session — Persistent storage of sessions and automatic cookie handling 131

os.environ[’SCRIPT_NAME’]+’?destroy=True’,
’Destroy Session’,
’<p>Every time you visit this page the expiry \
time increases 5 seconds</p>’+’</p><p>’.join(data)

)
else:

print web.header(’text/html’)
store[’Variable1’] = ’Python Rules!’
printPage(

’New Session Started’,
os.environ[’SCRIPT_NAME’],
’Visit Again’, ’’, ’’,
"Set variable1 to ’Python Rules!’"

)

connection.commit() # Save changes
connection.close() # Close the database connection

You can test this example by running the webserver ‘scripts/webserver.py’ and visiting
http://localhost:8080/doc/src/lib/webserver-web-session.py

1.11.12 API Reference

Manager Objects

The SessionManager object is aliased asweb.session.manager and should be used as
web.session.manager .

classSessionManager (driver, [expire=86400], [cookie], [autoCreate=0], [seed], [cleanupProbability],
[**driverParams])

Used to return a session manager object.

Manager Parameters:

driver and **driverParamsIf driver is a string, any extra parameters passed to the
web.session.manager() function are passed onto theweb.session.driver() function to cre-
ate a driver. Alternativelydriver can be aDriver object as returned byweb.session.driver()
and no**driverParamsneed to be specified.

expireThe number of seconds a newly created session should be valid for. If not specified the default is 86400
seconds which is 24 hours.

cookieA dictionary specifying any parameters which you would like the session cookie to have. The defaults
used are specified inweb.session.cookieDefaults .
In particular you may wish to modify the following parameters:

path The path of the domain specified bydomainfor which the cookie is valid. If not specified the default
is ’/’ which means the whole website. XXX is this correct?

domain The domain for which the cookie is valid. If not specified the default is’’ which means any
domain. XXX is this correct?

commentAn optional comment for your cookie to explain what it does or who set it
max-age The length of time in seconds the cookie should be valid for. If set to0 the cookie will expire

immediately. If not present the cookie will take the expire time of the session. If set toNone the
cookie will last until the web browser is closed.

By default themax-age of the cookie is set to be the same as the expire time set by theexpireparameter.

autoCreateIf set toTrue the necessary tables will be created (removing any existing tables) if any of the tables
are missing. This is designed for easy testing of the module.

132 Chapter 1. Web Modules

seedWhen generating session IDs it is important a hacker cannot guess what the next session ID will be
otherwise they could make a cookie so that the application thinks they are someone else. You can specify
a seedwhich is simply a string to make the generation of session IDs even more random. The default is
’PythonWeb’ .

cleanupProbabilityEvery so often expired sessions and their corresponding data need to be removed from the
session store. There is a probability specified bycleanupProbabilitythat this cleanup will occur when a
manager object is created. IfcleanupProbabilityis 1 cleanup is done every time a manager is created.
If cleanupProbabilityis 0 no automatic cleanup is done and cleanup is left to the administrator. The
default is0.05 which means old session information is removed roughly every 20 times a manager object
is created.

All session manager objects have theread only member variables which you should not set:

sessionID
The session ID for the current session. This is a unique 32 character string set after a session is created or
loaded. It isNone before that time.

expire
The expire length in seconds (the minimum length of the session)

seed
The default seed used to generate the session ID

cookie
A dictionary containing the cookie parameters.

error
If an error occurred loading a session, for example the session ID did not exist or had expired, the error is
available through this attribute. If no error occurred the value isNone.

cleanupProbability
The probability of checking for, and removing expired sessions

response headers
A list of cookie headers in the WSGI format(type, value)

sent headers
A list of the cookie headers printed aftersendCookieHeaders() has been called. Useful for debug-
ging

completeSessionEnvironment ()
ReturnsTrue if the environment is correctly setup,False otherwise. In the case of the database driver
this method simply checks that all the necessary tables exist.

createSessionEnvironment ()
Creates the necessary environment. In the case of the database driver this method creates all the required
tables. If any of the tables already exist aSessionError is raised.

removeSessionEnvironment ([ignoreErrors=False])
Removes the environment. In the case of the database driver this method drops all the tables. If any of the
tables are not present aSessionError is raised unlessignoreErrorsis True .

load ([sessionID=None])
Attempt to load the session with the session IDsessionID. If sessionIDis not specified the session ID is
obtained from a cookie usingos.environ . If your environment doesn’t support loading of a cookie in
this wayseesionIDshould be specified. If the session exists and is valid it is loaded and the method returns
True otherwise it returnsFalse and you should create a new session usingcreate() . The reason the
session could not be loaded is set to theerror attribute.

create ([sendCookieHeaders=True], [expire])
Generate a new session ID and start a new session with it. If after 100 attempts no new session ID has been
created because the IDs generated already exist, aSessionError is raised.self. seed is specified
it is used to make the generation of session ID more random.

1.11. web.session — Persistent storage of sessions and automatic cookie handling 133

If sendCookieHeadersis True aSet-Cookie HTTP header is immediately printed. IfFalse a WSGI
(type, info) header is appended toresponse headers so the application can handle the header
itself. If expireis the number of seconds the session should be valid for. If not specified the value of the
expire attribute is used. Returns the new session ID.

store (app)
Return a session store object for manipulating values in the application’s store.appis the application name
as a string made up of the charactersa-z , A-Z , 0-9 and- . . The application name must be between 1
and 255 characters in length. The application names do not have to be the same as application names used
by theweb.auth module, although these are the most appropriate choices. If you are not using multiple
applications you should still give your application a name, perhaps’default’ for example.

destroy ([sessionID], [sendCookieHeaders=True], [ignoreWarning=False])
Remove all session information for the session. IfsessionIDis specified all session information forses-
sionID is removed. IfsendCookieHeadersis True aSet-Cookie HTTP header is immediately printed.
If False a WSGI(type, info) header is appended toresponse headers so the application can
handle the header itself. IfignoreWarningis not set toTrue a SessionWarning is raised explaining
why destroying sessions is not a good idea.
Warning: Destroying sessions is strongly not recommended since any other application currently using
the session store may crash as the session information will have been removed. If you wish to remove all
data from the session store it would be better to use the store object’sempty() method, emptying the
store but leaving the session intact. If you must remove a session usesetExpire(time.time())
to make the session expire immediately or send a cookie built withdeleteCookieString() . Any
applications using the session will still be able to access the information if they have already loaded the
session but will not be able to load the session again.

cookieSessionID ([environ=None], [noSessionID=”])
Obtain a session ID from theHTTP COOKIEenvironmental variable. The defaultenviron dictionary
is os.environ . If you wish to provide your own environment dictionary (for example you are using a
WSGI application) you can specifyenviron. If the session ID cannot be loadednoSessionIDis returned
which by default is an empty string.

cleanup ([min], [max], [ignoreWarning=False])
Remove and information related to sessions which have expired between the timesminandmax. All times
are in seconds since the epoch (00:00:00 UTC, January 1, 1970). Ifmin is not specified it is assumed to be
0 (the beginning of the epoch), ifmaxis not specified it is assumed to be the current time. If you specify
a valuemaxgreater than the current time returned bttime.time() aSessionWarning is raised. To
ignore the warning setignoreWarningto True .
Warning: You should not set a value ofmaxgreater than the current time unless you understand the risk
since doing so will remove sessions which haven’t yet expired. If an application is using the session store
and its session is cleaned up, that application may crash.

setExpire (expireTime,[sessionID])
The method is used to change the time an existing session will expire or to set a new expiry date if it has
already expired.expireTimeis the time you want the session to expire in seconds since the epoch (00:00:00
UTC, January 1, 1970).expireTimeis NOT the extra number of seconds to allow the session to exist for.
If sessionIDis specified the expire time of the session with IDsessionIDis updated, otherwise the current
session expire time is modified.

valid ([sessionID])
If sessionIDis specified the validity of the session with IDsessionIDis checked. Otherwise the cur-
rent session is checked. ReturnsTrue if the session is valid,False if the session has expired. A
SessionError is raised if the session does not exist. Whether or not a session exists can be checked
with theexists() method.

exists ([sessionID])
If sessionIDis specified the session with IDsessionIDis checked. Otherwise the current session is
checked. ReturnsTrue if the session is exists,False if the session does not exist. No comment is
made on whether or not the session is still valid, instead this can be checked with thevalid() method.

134 Chapter 1. Web Modules

sendCookieHeaders ()
Uses Python’sprint statement to send any headers in theresponse headers attribute to the stan-
dard output, appending the exact strings printed to thesend headers attribute for debugging purposes.
Used by thecreate() anddestroy() methods to send cookie headers so could be over-ridden in
derived classes to change cookie handling behaviour.

setCookie ([sendCookieHeaders=False], [cookieString=None])
Get a cookie string from setCookieString() to set a new cookie, parse the string into a WSGI
(type, info) pair and append it to theresponse headers attribute. If sendCookieHeadersis
True , sendCookieHeaders() is called to send the cookie header.cookieStringcan be used to
specify the cookie to set, ifNone the cookie string is automatically generated.

setCookieString ([maxAge])
Returns an HTTP header to set a cookie using the default cookie values set in the class constructor.max-
ageis the length of time in seconds the cookie should last.

deleteCookie ([sendCookieHeaders=False])
Get a cookie string fromdeleteCookieString() to set the expire time of the cookie to one second,
parse it into a WSGI(type, info) pair and append it to theresponse headers attribute. If
sendCookieHeadersis True , sendCookieHeaders() is called to send the cookie header.

deleteCookieString ()
Returns an HTTP header to set the expire time of the session cookie to 1 second, effectively forcing it to
expire.

Store Objects

The store object is obtained from thestore() method of the manager object. It is used to manipulate the session
store of the application specified in thestore() method.

classStore
store objects have the following attribute:

app
This is the name of the application whose store we are manipulating.app can be set to another applica-
tion’s name in order to manipulate a different session store. Application names are strings made up of the
charactersa-z , A-Z , 0-9 and- . and are between 1 and 255 characters in length.

store objects have the following methods:

set (key, value)
Set the value ofkeyto the valuevaluein the session store.valuecan be any Python object capable of being
pickled. See Python’spickle module for more information.

get (key)
Get the value ofkeyfrom the session store.

delete (key)
Removekeyand its associated value from the session store.

empty ()
Empty this application’s session store of all information removing all keys and values but leaving the
session itself and other application’s stores intact.

has key (key)
ReturnsTrue if keyexists on the session store otherwiseFalse .

keys ()
Returns a sequence of store keys. The order of the keys is not defined. Keys obtained from this method
cannot be set directly. Instead theset() method should be used.

items ()
Returns a tuple of(key, value) pairs for each key in the store. The order of the values is not defined.

1.11. web.session — Persistent storage of sessions and automatic cookie handling 135

Values and keys obtained from this method cannot be set directly. Instead theset() method should be
used.

values ()
Returns a sequence of store values. The order of the values is not defined. Values obtained from this
method cannot be set directly. Instead theset() method should be used.

store objects also implement the following methods: getitem (key) , setitem (key,
value) and delitem (key) which map directly to theget(key) , set(key) anddelete(key)
methods respectively and allow the store object to be treated similarly to a dictionary as demonstrated earlier in
the documentation.

1.12 web.template — For the easy display of data as HTML/XML

Theweb.template module currently only provides one function,pasrse() , used to parse a template.

parse (type=’python’, dict=None [,file=None][,template=None][,useCompiled=’auto’
][,swapTemplatePaths=None])

Simple wrapper method to load and parse a template from the options given.

typeThe type of template to parse. Can be’python’ , ’cheetah’ , ’xyaptu’ or ’dreamweaverMX’ . A
’python’ template is a string using the dictionary filling format.

dictA dictionary of values used to fill the template

fileThe file containing the template. If not specified orNone, templatemust be specified.

templateThe template as a string. If not specified orNone, file must be specified.

useCompiledOnly used for Cheetah. Specifies whether or not a compiled version of the template should be
used.

swapTemplatePathsOnly used for DreamweaverMX. IfNone nothing is done. Otherwise can be set to
(oldPath, newPath) to swap paths in the template itself before the parsing is done.

Simple example:

>>> import web.template
>>> print web.template.parse(dict={’w’:’World!’}, template="Hello %(w)s")
Hello World!

This is the same as doing this in Python:

>>> print "Hello %(w)s"%{’w’:’World!’}
Hello World!

1.12.1 Cheetah Template

Cheetah is a powerful, stable and well documented templating system. It works by parsing the template into a Python
script and then executing that script with the dictionary to produce output. The performance of Cheetah can be
improved by writing this script to a file and executing it each time Cheetah is run rather than re-generating it every
time.

TheuseCompiledparameter of theparse() function can be used to determine the behaviour of this compilation. If
useCompiledis False the template is parsed every time. This is the slowest but simplest option. IfuseCompiledis
True the compiled template is used even if the original template has changed. This is the fastest option but you must
manually tell Cheetah to recompile the template if it changes. IfuseCompiledis ’auto’ then Cheetah will use the
compiled file as long as the template has not been modified. If it has it will automatically recompile the template.

136 Chapter 1. Web Modules

Warning: This is the best comprimise. IfuseCompiledis True or ’auto’ then Cheetah must have write access to
the directory containing the templates. If it doesn’t you may get Internal Server Errors, particularly if you are using
web.error with Cheetah templates to catch errors as an error will be thrown in the error catching code and this will
lead to an error that is hard to track down.

You can also use Cheetah directly by importing it as follows:

import web
import Cheetah

Here is an example Cheetah template:

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>$title</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
</head>
<body>
<h1>$title</h1>
$welcomeMessage
#if $testVar == True
The test variable is True
#else
The test variable is not True
#end if
</body>
</html>

Here is a program to manipulate it:

#!/usr/bin/env python

import sys; sys.path.append(’../../../’) # show python where the web modules are
import web.template

dict = {
’welcomeMessage’:’Welcome to the test page!’,
’testVar’:True,
’title’:’Cheetah Example’,

}

print web.template.parse(
type=’cheetah’,
file=’file-web-template-cheetah.tmpl’,
dict=dict

)

And here is the output produced:

1.12. web.template — For the easy display of data as HTML/XML 137

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Cheetah Example</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
</head>
<body>
<h1>Cheetah Example</h1>
Welcome to the test page!
The test variable is True
</body>
</html>

See Also:

Cheetah Template Homepage
(http://cheetahtemplate.org/)

The Cheetah homepage has full documentation for using Cheeath and explains the full syntax available and the
range of options that can be used.

1.12.2 XYAPTU Templating

XYAPTU is an ASPN recipie based on YAPTU. Both modules are included with the web modules and can be imported
directly:

import web
import xyaptu, yaptu

Here is an example xyaptu template:

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>$title</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
</head>

<body>
<p>$welcomeMessage</p>

<py-open code="if testVar:" />
The variable is: True

<py-clause code="else:" />
The variable is: False

<py-close/>

</body>
</html>

Here is a program to manipulate it:

#!/usr/bin/env python

138 Chapter 1. Web Modules

import sys; sys.path.append(’../../../’) # show python where the web modules are
import web.template

dict = {
’welcomeMessage’:’Welcome to the test page!’,
’testVar’:True,
’title’:’XYAPTU Example’,

}

print web.template.parse(
type=’xyaptu’,
file=’file-web-template-xyaptu.tmpl’,
dict=dict

)

And here is the output produced:

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>XYAPTU Example</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
</head>

<body>
<p>Welcome to the test page!</p>

The variable is: True

</body>
</html>

See Also:

XYAPTU Information on ASPN
(http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/162292)

This page is where the recipie first appeared and is where the most complete documentation can be found.

1.12.3 Dreamweaver MX

The web modules can also parse Dreamweaver MX templates as long as they only use standard Editable Regions and
the regions are empty so that the tags look like this:

<!-- TemplateBeginEditable name="content" --><!-- TemplateEndEditable -->

DreamweaverMX templates are passed just like the others except you settypeto ’dreamweaverMX’ .

Warning: If you set thedoctitle editable region please remembe to include<title> and </title> tags
around the title you set as the template doesn’t include these for you.

1.12. web.template — For the easy display of data as HTML/XML 139

Here is an example Dreamweaver MX template:

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<!-- TemplateBeginEditable name="doctitle" -->
<title>PythonWeb.org - Dreamweaver MX Example</title>
<!-- TemplateEndEditable -->
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<!-- TemplateBeginEditable name="head" --><!-- TemplateEndEditable -->
</head>

<body>

<h1><!-- TemplateBeginEditable name="Title" -->Web Modules<!-- TemplateEndEditable --></h1>
<!-- TemplateBeginEditable name="Content" -->
<p> </p>
<!-- TemplateEndEditable -->

</body>
</html>

Here is a program to manipulate it:

#!/usr/bin/env python

import sys; sys.path.append(’../../../’) # show python where the web modules are
import web.template

dict = {
’Content’:’Welcome to the test page!’,
’doctitle’:’Dreamweaver MX Example’,
’Title’:’Dreamweaver MX Example’,

}

print web.template.parse(
type=’dreamweaverMX’,
file=’file-web-template-dreamweaverMX.dwt’,
dict=dict

)

And here is the output produced:

140 Chapter 1. Web Modules

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<!-- InstanceBeginEditable name="doctitle" -->Dreamweaver MX Example<!-- InstanceEndEditable -->
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<!-- InstanceBeginEditable name="head" --><!-- InstanceEndEditable -->
</head>

<body>

<h1><!-- InstanceBeginEditable name="Title" -->Dreamweaver MX Example<!-- InstanceEndEditable --></h1>
<!-- InstanceBeginEditable name="Content" -->Welcome to the test page!<!-- InstanceEndEditable -->

</body>
</html>

1.13 web.util — Useful utility functions that don’t fit elsewhere

This module provides a number of functions which come in handy when programming web applications but that don’t
fit in elsewhere. It is a catch all module for useful leftovers.

wrap (text, width)
A word-wrap function that preserves existing line breaks and most spaces in the text. Expects that existing line
breaks are posix newlines. (ie backslash n)

textThe text to wrap

widthThe maximum number of characters in a line

strip (html,[validTags=[]])
Strip illegal HTML tags from string

htmlThe HTML which needs some tags stripping

validTagsA list or tuple of tags to leave in place

runWebServer ([root=’../’, cgi=’/cgi-bin’,])
Run a simple webserver on port 8080 on localhost. The root of the website corresponds to the directoryroot.
cgi is URL of the the cgi-bin where files can be executed. Once this command is run code execution stops as
the webserver listens for requests so there is no point in writing code after this command as it will not be run.

Warning: NOT SUITABLE FOR COMMERCIAL USE.

dirThe only directory where scripts are allowed to run. Directory names should be the full URL path from the
root of the webserver and therefore should begin with/

1.13.1 Creating Tables

table (columns, values,[width=80], [mode])
Pretty print a table of data for display in a terminal of widthwidth

Warning: This function has changed radically from version 0.4.0

columnsThe names of the columns in the order they are displayed in each row of values.

1.13. web.util — Useful utility functions that don’t fit elsewhere 141

valuesThe data to be displayed in the format:

(
(’column1value1’, ’column2value1’, ’column3value1’, ’column4value1’),
(’column1value2’, ’column2value2’, ’column3value2’, ’column4value2’),
(’column1value3’, ’column2value3’, ’column3value3’, ’column4value3’),

)

The values and column headings can be any object which can be converted to a string usingstr() .

widthThe wrap width of the string produced. The default is80 which means the table will we wrapped to the
width of a standard terminla or command line prompt. Ifwidth is set to0 no wrapping is produced.

displayIf displayis set to’terminal’ the line ending at the wrap width (specified bywidth) will not be added
since the line will wrap around to the next line anyway. Adding the linebreak would result in blank lines
appearing.

modeIf modeis set to’sql’ the values are encoded in a way to representNone asNULL and userepr()
whenstr() would be ambiguous.

For example:

#!/usr/bin/env python

import sys; sys.path.append(’../../../’) # show python where the web modules are

import web.util
columns = [

’column1Heading’,
’column2Heading’,
’column3Heading’,
’column4Heading’

]
values = [

[’column1value1’, ’column2value1’, ’column3value1’, ’column4value1’],
[’column1value2’, ’column2value2’, ’column3value2’, ’column4value2’],
[’column1value3’, ’column2value3’, ’column3value3’, ’column4value3’],

]
print "Printing the table with wrap width=0...\n"
print web.util.table(columns, values, width=0)
print "Printing the table with wrap width=60...\n"
print web.util.table(columns, values, width=60)

142 Chapter 1. Web Modules

The output produced is:

Printing the table with wrap width=0...

+----------------+----------------+----------------+----------------+
| column4Heading | column3Heading | column2Heading | column1Heading |
+----------------+----------------+----------------+----------------+
column4value1	column3value1	column2value1	column1value1
column4value2	column3value2	column2value2	column1value2
column4value3	column3value3	column2value3	column1value3
+----------------+----------------+----------------+----------------+

Printing the table with wrap width=60...

+----------------+----------------+----------------+--------
| column4Heading | column3Heading | column2Heading | column1
+----------------+----------------+----------------+--------
| column4value1 | column3value1 | column2value1 | column1
| column4value2 | column3value2 | column2value2 | column1
| column4value3 | column3value3 | column2value3 | column1
+----------------+----------------+----------------+--------

--------+
Heading |
--------+
value1 |
value2 |
value3 |
--------+

Warning: If you don’t set the wrap width and your table is wider than the terminal then the terminal will wrap the
table output itself. If this happens it will wrap each induvidual line of text rather than the whole table producing output
that looks more like this:

+----------------+----------------+--------------
--+----------------+
| column4Heading | column3Heading | column2Headin
g | column1Heading |
+----------------+----------------+--------------
--+----------------+
| column4value1 | column3value1 | column2value1
| column1value1 |
| column4value2 | column3value2 | column2value2
| column1value2 |
| column4value3 | column3value3 | column2value3
| column1value3 |
+----------------+----------------+--------------
--+----------------+

1.13.2 Calendar Tools

Theweb.util.calendarTools module provides two functionsmonth() to display an HTML calendar for the
specified month andcalendar() to display a range of months in HTML.

1.13. web.util — Useful utility functions that don’t fit elsewhere 143

#!/usr/bin/env python

show python where the modules are
import sys; sys.path.append(’../’); sys.path.append(’../../../’)
import web.error; web.error.enable()
import web.util.calendarTools

print web.header()

calendars = [
’web.util.calendarTools.month(year=2004,month=12)’,
"""web.util.calendarTools.month(

year=2004,
month=12,
dayNameLength=0,
firstDay=5

)""",
"""web.util.calendarTools.month(

year=2004,
month=12,
dayNameLength=3,
monthURL = ’month.py?month=%(month)s&year=%(year)s’,
previousURL = ’previous.py?month=%(month)s&year=%(year)s’,
nextURL = ’next.py?month=%(month)s&year=%(year)s’,
previousHTML = ’prev’,
nextHTML = ’next’,

)""",
"""web.util.calendarTools.month(

year=2004,
month=12,
daysURL = ’day.py?day=%(day)s&month=%(month)s&year=%(year)s’,
days = {

12:[’day.py?day=12’, ’twelve’, ’style="background: #eee"’]
}

)""",
"""web.util.calendarTools.month(

year=2004,
month=12,
tableColor = ’#eeeecc’,
barColor = ’#eeeeee’,
cellPadding = 16,

)""",

]

fullCal="""web.util.calendarTools.calendar(
startYear=2004,
startMonth=9,
months=12,
cols=3,
dayNameLength=1,
barColor="#eeeeee"

)
"""
output = ’’
for cal in calendars:

output += """<hr><table border="0" cellPadding=10 width="100%%">
<tr><td width="1%%">%s</td><td width="99%%"><pre>%s</pre></td>
</tr></table>"""%(eval(cal), web.encode(cal, mode=’form’))

144 Chapter 1. Web Modules

print """
<html>
<style>
.calendarTools-month-header{

font-family: sans-serif;
font-weight: bold;

}
</style>
<body>
<h1>Example Calendars</h1>
<p>This page demonstrates the parameters used to generate HTML
calendars. They can also be styled using CSS stylesheets. For
example the following is uses in this HTML page to make all the
calendar headings a sans serif font:</p>
<pre>
<style>
.calendarTools-month-header{

font-family: sans-serif;
font-weight: bold;

}
</style>
</pre>

%s

<hr>
<p>The next calendar is generated using the following code:
<pre>
%s
</pre>

%s
</body>
</html>"""%(output, fullCal, eval(fullCal))

You can test this example by starting the test webserver in ‘scripts/webserver.py’ and visiting
http://localhost:8080/doc/src/lib/webserver-web-util-calendar.py on your local machine.

XXX Full function reference

1.14 web.wsgi — Web Server Gateway Interface tools

The WSGI interface is a specification designed by Phillip J. Eby with contributions from the Python Web-SIG mailing
list which defines a proposed standard interface between web servers and Python web applications or frameworks, to
promote web application portability across a variety of web servers.

Theweb.wsgi module implements the WSGI interface for the Web Modules.

Note: The web server interface and tools proposed for previous versions of the modules have now been dropped in
favour of supporting the WSGI in their place. All components which were implemented have now been moved into
WSGI middleware components instead.

See Also:

PEP 333 - Python Web Server Gateway Interface
(http://www.python.org/peps/pep-0333.html)

This document specifies the Web Server Gateway Interface and defines some simple objects demonstrating the
approach.PEP 333 should be read before reading this documentation

1.14. web.wsgi — Web Server Gateway Interface tools 145

It should also be noted that the web modules WSGI implementation is based heavily on Phillip J. Eby’s
wsgiref implementation

Note: The WSGI specification is farily new and the author of this document is learning it as he goes along! Conse-
quently there may be important omissions or even errors. I would very much appreciate any comments or corrections
so please feel free to contact docs at pythonweb.org if you have any.

1.14.1 Introduction

What is a WSGI application?

The WSGI PEP can be quite confusing if all you want to do is write applications quickly and easily. The best way to
explain the WSGI is to work through an example demonstrating how an application written as a CGI script has to be
modified to work as a WSGI application.

Consider the CGI script code below:

#!/usr/bin/env python
print ’Content-type: text/plain\n\n’
print ’Hello world!’

This does nothing more than print the words’Hello world!’ to a web browser in plain text. What we have
done is sent an HTTP headerContent-type: text/plain\n\n and then a text string to the browser. The
webserver may also have sent a’200 OK’ response if the application completed successfully.

To create the same result using a WSGI application we would use this code:

def simplestApp(environ, start_response):
start_response(’200 OK’,[(’Content-type’,’text/plain’)])
return [’Hello world!’]

application = simplestApp

This is the most basic WSGI application. It is a function namesapplication which a WSGI server will call and
pass two parameters. The first is a dictionary namedenvironcontaining environmental variables and the second is a
function namedstart responsewhich must be called before the application returns a value.

You may not be happy with the functionstart response being passed as a parameter to ourapplication
callable. Whilst it is not possible to pass a function as a parameter in some languages it is allowed in Python. This
ability to pass callables as function parameters is crucial to understanding how the WSGI works.

Here is an example to consider:

def b(text):
print text

def a(print_response):
print_response("Hello World!")
return "It worked!"

print a(b)

In this case we are passing the functionb to thea as the parameterprint response. We are then printing the value
returned froma. What do you think the result will be?

146 Chapter 1. Web Modules

The answer is this:

Hello World!
It worked!

Make sure you understand this example before you read on.

A WSGI application must do two things, these are:

1. Call thestart response function (passed to ourapplication callable) with the parametersstatusand
headersin the correct order. This will set the status of the application and send the HTTP headers. In our
example the status is’200 OK’ meaning everything has gone according to plan and we only send one header,
theContent-type header with the valuetext/plain .

2. Return an iterable containing nothing but strings. In this example the iterable is simply a list containing one
string. The return value could equally well have been[’Hello’, ’ ’, ’world!’] but there was no
need to make things more complicated.

There are some big advantages in rewriting our code as a WSGI application:

• Once a server has loaded our application it can execute it many times without having to reload it on each request.
This makes for huge performance gains over a traditional CGI approach.

• By using callables in this standard way it is possible to chain together applications called middleware compo-
nents to provide applications with extra functionality passed in theenvirondictionary with very little program-
ming effort.

• The application has control over its status. For example if the application encountered an error it could send an
’500 Error’ status message and the WSGI server would display its appropriate error page.

• All HTTP headers are sent at the same time before the main content avoiding the possibility of sending HTTP
headers at the wrong time.

What Are Middleware Components?

Consider the slightly more complicated example below using the imaginary session handling module
superSession :

#!/usr/bin/env python

import superSession
session = superSession.session()
print "Content-type: text/plain\n\n"
if session.has_key(’visited’):

print "You have already visited!"
else:

session[’visited’] = 1
print "This is your first visit."

We create a session object and display a different string depending on whether or not the user has visited the site
before. We could follow the approach above and create the following WSGI application to do the same thing:

1.14. web.wsgi — Web Server Gateway Interface tools 147

def application(environ, start_response):
import superSession
session = superSession.session()
if session.has_key(’visited’):

text = "You have already visited!"
else:

session[’visited’] = 1
text = "This is your first visit."

start_response(’200 OK’, [(’Content-type’,’text/plain’)])
return [text]

This would be perfectly good and work perfectly well. We could now refactor the code again:

def exampleApplication(environ, start_response):
if environ[’superSession’].has_key(’visited’):

text = "You have already visited!"
else:

environ[’superSession’][’visited’] = 1
text = "This is your first visit."

start_response(’200 OK’, [(’Content-type’,’text/plain’)])
return [text]

def session(application):
def app(environ, start_response):

if "superSession" not in environ:
import superSession
environ["superSession"] = superSession.session() # Options would obviously need specifying

return application(environ, start_response)
return app

application = session(exampleApplication)

We have separated out the session code into a different function and added a key to theenviron dictio-
nary called"session" which contains the session object. OurexampleApplication then accesses the
session object through theenviron dictionary. Note how we have renamed ourapplication function to
exampleApplication and mapped the nameapplication to thesession(exampleApplication) ob-
ject. The WSGI server will still be able to find a callable namedapplication and so will still be able to run our
application.

Thesession function is now what we call a middleware component as it sits in between the server and the applica-
tion. It gives the application new functionality but the result of callingsession(exampleApplication) is also
just a WSGI application (because the combined object still conforms to the rules listed earlier) and so the server can
still run the code.

The huge advantage of refactoring code in this way is that the session functionality can now easily be added to any
WSGI application using oursession function. By chaining together these middleware components (which do not
even have to be based on the Web Modules) WSGI applications can gain an enormous amount of functionality for
very little programming effort by using existing middleware components. This helps make code easy to maintain and
offers a very flexible programming methodology.

148 Chapter 1. Web Modules

Callables, Classes or Functions?

I have been quite careful all the way through the introduction to describe the application and middleware as callables
and not just as functions (which is what they have happened to be so far). We could re-write the session middleware
component described in the previous section as follows:

class Session:
def __init__(self, application):

self.application = application

def __call__(self, environ, start_response):
if "superSession" not in environ:

import superSession
environ["superSession"] = superSession.session() # Options would obviously need specifying

return self.application(environ,start_response)

application = Session(exampleApplication)

If you think carefully about what is happening here you will realise that ourSession class behaves in exactly the
same way as the functionsession did in the previous example.

The advantage of using a class rather than a function for a middleware component is that you can derive another mid-
dleware component from an existing one that provides similar functionality without re-writing the entire component.

Theweb.wsgi module contains middleware classes for all of the web modules functionality which you can use on
their own or as base classes for your own middleware components including session functionality. The middleware
components are all described later on in this documentation.

You can also specify your application object as a class. Consider this example

def myApp(environ, start_response):
start_response(’200 OK’, [(’Content-type’,’text/plain’)])
return [’Hello World!’]

application = myApp

The following code performs exactly the same task.

class MyApp(web.wsgi.base.BaseApplication):
def __call__(self, environ, start_response):

start_response(’200 OK’, [(’Content-type’,’text/plain’)])
return [’Hello World!’]

application = MyApp()

It can also be useful to specify applications as classes so that functionality can be derived from other applications.

Difficulties with WSGI Applications

One of the most important differences between using WSGI applications and ordinary CGI applications is that WSGI
applications code is not loaded on each request. Instead it is loaded once and then repeatedly executed. This means
that you cannot put information which is likely to change on each request in the global namespace because it will not
be updated.

1.14. web.wsgi — Web Server Gateway Interface tools 149

A good example to illustrate this problem isweb.cgi . Theweb.cgi variable is loaded once and contains any CGI
variables to be passed to a CGI script. Since each CGI request completely reloads and executes all code in the script,
web.cgi will always contain the correct CGI variables when used in a CGI script.

However, consider this example application:

import web

def application(environ, start_response):
start_response(’200 OK’, [(’Content-type’,’text/plain’)])
return [’Here are the CGI variables: %s’%(’\n’.join(web.cgi.keys()))]

The first time the application is run, the correct results will be displayed, the second time it is run by the WSGI server,
web will already have been imported and will not be imported again. This means theweb.cgi variable will be out
of date.

The solution to this is to put everything which needs to be reloaded on each request into the main body of the applica-
tion, or consider placing it as a middleware component.

import cgi

def application(environ, start_response):
start_response(’200 OK’, [(’Content-type’,’text/plain’)])
return [’Here are the CGI variables: %s’%(’\n’.join(cgi.FieldStorage().keys()))]

XXX Probably need to explain this better.

The PythonWeb WSGI Server

A WSGI server has to be able to convert a URL to a path on a drive, find the application namedapplication within
the file specified and call it, passing the application a dictionary of environmental variables and astart response
function to set the status of the application and send the HTTP headers.

Note: As we have seen the object namedapplication may not be an application at all, it may in fact be a chain of
middleware components and an application, but the WSGI server treats it in the same way because, as we have already
seen, applications with middleware stacks behave in exactly the same way as an application on its own.

The Python Web Modules come with just such a WSGI server named ‘WSGIServer.py’ and available in the ‘scripts’
directory of the Web Modules distribution.

To use the WSGI server simply run the ‘WSGIServer.py’ file from the command line by executing the following:

> python WSGIServer.py

A sample WSGI application should be available byhttp://localhost:8000/simple with a web browser.

‘WSGIServer.py’ also takes a series of arguments to customise its behaviour. These can be viewed by runningpython
WSGIServer.py -h at the command line.

Warning: Since the WSGIServer loads all the application code when it starts, if you make changes to the samples the
server will need to be restarted before the changes will take effect.

The WSGI Server also supports a special debug mode. If your application raises aweb.error.Breakpoint
exception, the server will not handle the request but instead will give a debug prompt so that you can debug the

150 Chapter 1. Web Modules

variables at the breakpoint.

import web.wsgi

class simpleApp(web.wsgi.base.BaseApplication):
def start(self):

import web.error
value = 5
raise web.error.Breakpoint(’Test Exception’)

application = simpleApp()

With the WSGI Server running test this example by visitinghttp://localhost:8000/debug with a web browser. You will
see aHandling Breakpoint message at the server prompt (nothing will be displayed in the browser though).
PressEnter .

You can debug the code as follows and then typeexit to exit the prompt.

debug> value
5
debug> exit

web.wsgi Functions

runCGI (application)
Wrapper function to enable WSGI applications to run in a CGI environment.applicationis the WSGI applica-
tion or middleware to run in a CGI environment.

You may not be in a situation where you have access to a WSGI server. The Python web modules also come with a
code to allow WSGI applications and middleware to be run in a CGI environment such as Apache.

If you want to run a WSGI as a CGI application you need to turn it back into one. This can be done very simply by
using the middleware componentweb.wsgi.runCGI as shown below:

#!/usr/bin/env python

show python where the web modules are
import sys; sys.path.append(’../’); sys.path.append(’../../../’)

def simpleApp(environ, start_response):
status = ’200 OK’
headers = [(’Content-type’,’text/plain’)]
start_response(status, headers)
return [’Hello world from simple_application!\n’]

import web.wsgi
web.wsgi.runCGI(simpleApp)

The application can then be run in a normal CGI webserver.

To test this approach run ‘webserver.py’ using python webserver.py in the ‘scripts’ directory and visit
http://localhost:8080/doc/src/lib/webserver-web-wsgi-simple-cgi.py to see a sample CGI WSGI application running.

Note: It much faster to execute WSGI applications through a dedicated WSGI server than to run them as CGI scripts.
When a CGI script is executed all the Python libraries and modules the script uses need to be loaded into memory and

1.14. web.wsgi — Web Server Gateway Interface tools 151

then removed once the script exists. This has to happen for every request so there is an unecessary delay before the
WSGI application is even executed. When using a WSGI server the libraries and modules only need to be loaded once
and are then available for any subsequent requests so simple web requests can be handled perhaps 10 times faster.

currentURL (environ)
Return the current URL of the WSGI application from the environ dictionaryenviron

1.14.2 Understanding Middleware

As we learned in the introduction, WSGI middleware components can be chained together since each middleware,
application pair is also a valid WSGI application.

In the example given, theSession class changes theenvirondictionary to provide the application with more func-
tionality. It could also have been chained with anAuth middleware component to provide auth functionality as shown
below:

def exampleApplication(environ, start_response):
if not environ.has_key(’imaginaryAuth’):

raise Exception{’No auth module found’)
if environ[’superSession’].has_key(’visited’):

text = "You have already visited!"
else:

environ[’superSession’][’visited’] = 1
text = "This is your first visit."

start_response(’200 OK’, [(’Content-type’,’text/plain’)])
return [text]

class Session:
def __init__(self, application):

self.application = application

def __call__(self, environ, start_response):
if "superSession" not in environ:

import superSession
environ["superSession"] = superSession.session()

return self.application(environ, start_response)

class Auth:
def __init__(self, application):

self.application = application

def __call__(self, environ, start_response):
if "imaginaryAuth" not in environ:

import imaginaryAuth
environ["imaginaryAuth"] = imaginaryAuth.auth()

return self.application(environ, start_response)

application = Auth(Session(exampleApplication))

Middleware classes usually do one of four things or a combination of them:

• Change theenviron dictionary

• Change the application’sstatus

• Change the HTTPheaders

152 Chapter 1. Web Modules

• Change the return value of the application

The most common use is to alter theenvirondictionary in order to provide more functionality but here are some other
ways in which they can be used.

Error Handling Error handling middleware might catch an error raised, format it for display as HTML, change any
HTTP headers and status set and return the correct settings for an error page.

User Sign In User sign in middleware might wait for a’403 Forbidden’ status and instead display a sign in
page, setting a new status of ’200 OK’, new headers and of course a different result containg the HTML of the
sign in page.

1.14.3 The PythonWeb Middleware Components

The web.wsgi module contains middleware components to make use of all the functionality of the Python Web
Modules.

All PythonWeb WSGI middleware components are classes which take another WSGI middleware component or an
application as the first argument. The subsequent arguments configure how the middleware behaves.

web.wsgi.cgi – CGI Variable Access

The web.wsgi.cgi module provides one classCGI which adds the key’web.cgi’ to theenvirondictionary.
Middleware or applications further down the chain can access CGI variables usually accessed through theweb.cgi
object by usingenviron[’web.cgi’] . The class takes no arguments.

classCGI(application) application
A WSGI application or middleware component

Entries added toenviron:

environ[’web.cgi’] CGI information in the format ofweb.cgi

For example:

import web.wsgi.cgi

def myApp(environ, start_response):
start_response(’200 OK’, [(’Content-type’,’text/plain’)])
return [’Here are the CGI variables: %s’%(’\n’.join(environ[’web.cgi’].keys()))]

application = web.wsgi.cgi.CGI(myApp)

web.wsgi.error – Error Handling

Error handling middleware is designed to catch any exception which happened lower down the middleware chain
and handle the exception in an appropriate way. The WSGI server orrunCGI application will handle any exception
left uncaught, usually by displaying an HTML page with a message such as ”Server Error 500” so error handling
middleware is not essential but can be useful for debugging or informational purposes.

Theweb.wsgi.error module provides one classError which does not alter theenviron dictionary but does
catch any exception and print an HTML display of the traceback information. It can also be used to send an email
containing a debug output of the error.

1.14. web.wsgi — Web Server Gateway Interface tools 153

import web.wsgi

class simpleApp(web.wsgi.base.BaseApplication):
def start(self):

raise Exception(’Test Exception’)

application = web.wsgi.error.Error(
simpleApp(),
emailTo=[’james@example.com’], # Enter your email address
replyName=’WSGI Error Example’,
replyEmail=’none@example.com’,
subject=’Error Report’,
sendmail = ’/usr/bin/sendmail’, # Specify your sendmail path
smtp = ’smtp.ntlworld.com’, # or specify an SMTP server and change method to ’smtp’
method = ’smtp’,

)

Theerror method should return the valuesstatus , headers , iterable .

You can test this example by running the WSGI server ‘scripts/WSGIServer.py’ and visitinghttp://localhost:8000/error
Note: Please remember to modify the sample with your own email address and settings. You will need to restart the
WSGIServer after making a change.

You can also create your own error handling class by deriving a middleware class fromweb.wsgi.error.Error .
In this example a text traceback is displayed instead:

import web.wsgi, web.error

def simpleApp(environ, start_response):
raise Exception(’Test Exception’)

class myError(web.wsgi.error.Error):
def error(self):

"Generate an error report"
return (

’200 Error Handled’,
[(’Content-type’,’text/plain’)],
[web.error.info(format=’text’)]

)

application = myError(
simpleApp,

)

Theerror method should return the valuesstatus , headers , iterable .

You can test this example by running the WSGI server ‘scripts/WSGIServer.py’ and visiting
http://localhost:8000/errorCustom

Note: We do not need the#!/usr/bin/env python line or modifications tosys.path for WSGI applications
since the relevant objects are imported from the files, the files are not executed as scripts.

Errors along the lines of the one shown below may be due to incorrectly formed headers with tuples of the wrong
length and can be hard to track down.

154 Chapter 1. Web Modules

ValueError: unpack list of wrong size
args = (’unpack list of wrong size’,)

web.wsgi.error.documents – Error Documents

An error document is simply a web page which is used to let the user know that an error occured.

Note: You will often see ”Internal Server Error” error documents if you are using Apache and a CGI script does not
have the correct permissions for example. This is an error document. In Apache you can change the error page dis-
played using a .htaccess file. In WSGI you can use the error document middleware to provide custom error documents.

If a WSGI application or callsstart response() with a status which is not200 and is not handled by
any middleware, the server will need to display an error message or handle the error in appropriate way, usually by
displaying an error document in a similar way to the way Apache would.

The error document middleware lets you intercept these status messages before they are sent to the server to display a
custom error document.

TheDocuments class lets you specify error documents in three ways, as files, text, or by calling a function. Each of
the three methods involves specifying the status code as an integer key to the dictionary and the object as the item.

For example, to specify a file ‘error/500.html’ to be displayed if a500 server error occurs you could specify
files={500:’error/500.html’} . To specify a the error document as a text you could use the following:
text={500:’<html><h1>Internal Server Error</h1></html>’} .

Here is a full example:

import web.wsgi.error.documents

def simpleApp(environ, start_response):
start_response(’500 There was a server error’, [(’Content-type’,’text/html’)])
return []

application = web.wsgi.error.documents.Documents(
simpleApp,
text = {

500:"<html><body><h1>A server error occured</h1></body></html>"
}

)

You can test this example by running the WSGI server ‘scripts/WSGIServer.py’ and visiting
http://localhost:8000/documents

You can also provide more advanced error document handling by specifying a function to handle the error. For
example:

def serverError(environ):
import wsgi
return """<html><h1>Internal Server Error</h1>
<p>The page %s caused an error<\p></html>"""%wsgi.currentURL(environ)

You could then specifyfunctions={500:serverError} . The environ paramter is the full WSGI environ
dictionary passed to all WSGI applications, and as such can be used for advanced dynamic error document generation.

1.14. web.wsgi — Web Server Gateway Interface tools 155

Note: You cannot specify different types of document for the same error. For example if you specify a text server
error document for error500 , you cannot also specify a function server error document for error500 .

classDocuments (application,[files={}], [text={}], [functions={}]) application
A WSGI application or middleware component

files={}Any errors which should trigger the display of an error document from a file.

text={}Any errors which should trigger the display of an error document from a specified Python string.

functions={}Any errors which should trigger the display of an error document from a function.

web.wsgi.database – Database Access

The web.wsgi.database module provides one class Database which adds the keys
’web.database.connection’ and ’web.database.cursor’ to the environ dictionary based on
the parameters specified in the class constructor.

classDatabase (application,[**params]) application
A WSGI application or middleware component

**paramsAny parameter supported by theweb.database.connect() function

Entries added toenviron:

environ[’web.database.connection’] contains theconnection object

environ[’web.database.cursor’] contains thecursor object

Middleware or applications further down the chain can access the database through these objects as follows:

def myApp(environ, start_response):
result = []
result.append(’<html>’)
self.environ[’web.database.cursor’].execute(’SELECT * FROM test’)
rows = self.environ[’web.database.cursor’].fetchall()
for row in rows:

result.append(’<p>%s</p>’%row)
result.append(’</html>’)
start_response(’200 OK’, [(’Content-Type’,’text/html’)])
return result

application = web.wsgi.database.Database(
myApp,
type=’MySQLdb’,
database=’test’,

)

web.wsgi.session – Session Handling

Theweb.wsgi.session module provides one classSession

classSession (application,[**params]) application
A WSGI application or middleware component

**paramsAny parameters which can be passed toweb.session.manager() . If cursor is not spec-
ified it is assumed that you are usingDatabase middleware and the cursor is obtained from
environ[’web.database.cursor’]

Entries added toenviron:

156 Chapter 1. Web Modules

environ[’web.session’] A SessionManager object as returned by web.session.manager(). You can
obtain a session store usingstore = self.environ[’web.session’].store(’testApp’)
replacing’testApp’ with the name of your application’s store.

Theweb.wsgi.session.Session middleware requires the presence of theDatabase middleware and can be
used as shown in the example below:

from web.wsgi import *

class simpleApp(base.BaseApplication):

def printPage(self, title, url, link, url2, link2, data):
self.output("""

<html>
<h1>%s</h1>
<p>%s</p>
<p>%s</p>
<p>%s</p>
</html>"""%(title, url, link, url2, link2, data)

)
def start(self):

Write a simple application
store = self.environ[’web.session’].store(’testApp’)

if not self.environ[’web.session’].created:
if self.environ[’web.cgi’].has_key(’destroy’) and self.environ[’web.cgi’][’destroy’].value == ’True’:

self.environ[’web.session’].destroy(ignoreWarning=True, sendCookieHeaders=False)
self.headers.append(self.environ[’web.session’].response_headers[-1])
self.printPage(

’Session Destroyed’,
self.environ[’SCRIPT_NAME’],
’Start Again’, ’’,’’,’’

)
else:

self.environ[’web.session’].setExpire(self.environ[’web.session’].expireTime+5)
self.environ[’web.session’].setCookie()
self.headers.append(self.environ[’web.session’].response_headers[-1])
data = []
data.append(’SessionID: ’+self.environ[’web.session’].sessionID)
data.append(’Store Keys: ’+str(store.keys()))
data.append(’Store App: ’+store.app)
data.append(’Variable1: ’+str(store[’Variable1’]))
data.append(’ExpireTime: ’+str(self.environ[’web.session’].expireTime))
self.printPage(

’Welcome back’,
self.environ[’SCRIPT_NAME’],
’Visit Again’,
self.environ[’SCRIPT_NAME’]+’?destroy=True’,
’Destroy Session’, ’<p>Every time you visit this page the expiry time increases 5 seconds</p>’+
’</p><p>’.join(data)

)
else:

store[’Variable1’] = ’Python Rules!’
self.printPage(

’New Session Started’,
self.environ[’SCRIPT_NAME’],
’Visit Again’, ’’, ’’,
"Set variable1 to ’Python Rules!’"

1.14. web.wsgi — Web Server Gateway Interface tools 157

)
Save changes
self.environ[’web.database.connection’].commit()

application = error.Error(
database.Database(

session.Session(
cgi.CGI(

simpleApp(),
),
expire = 10,
autoCreate = 1,
driver = ’database’,

),
adapter = ’snakesql’,
database = ’wsgi-session’,
autoCreate = 1

),
)

You can test this example by running the WSGI server ‘scripts/WSGIServer.py’ and visiting
http://localhost:8000/session

web.wsgi.auth – User Permission Handling

Auth handling middleware. If an application returns a’403 Forbidden’ status message, the middleware inter-
cepts it and instead provides a sign in form and sign in functionality.

Once a user is signed in, the user’s information is added to theenviron dictionary as
environ[’web.auth.user’] for authorisation.

classSession (application, driver, [store=None], [expire=0], [idle=0], [autoCreate=0], [app=’auth’
], [template=’¡html¿¡body¿¡h1¿Please Sign In¡/h1¿%(form)s¡p¿%(message)s¡/p¿¡/body¿¡/html¿’
],[redirectMethod=’http’], [**driverParams])

application

A WSGI application or middleware component

driverThe type of driver being used. Currently only’database’ is allowed

**driverParamsAny parameters to be specified in the formatname=valuewhich are needed by the driver spec-
ified bydriver

autoCreateIf set toTrue the necessary tables will be created (removing any existing tables) if any of the tables
are missing and a user namedjohn with a passwordbananas will be set up with an access level of1 to
the applicationapp . This is designed for easy testing of the module.

encryptionThe encryption method used to encrypt the password. Can beNone or ’md5’ . Warning
you cannot change the encryption method once a user is added without
resetting the password.

storeor appStore should be a validweb.session Store object for storing the auth session information. If
not specified, a store can be obtained from theenviron[’web.session’] object if the name of the
store to used is specified byapp.

expireAn integer specifying the number of seconds before the user is signed out. A value of 0 disables the expire
functionality and the user will be signed in until they sign out.Note: If the underlying session expires, the
cookie is removed or the sign in idles before the expire time specified inexpirethe user will be signed out.

idleAn integer specifying the maximum number of seconds between requests before the user is automatically
signed out. A value of 0 disables the idle functionality allowing an unlimited amount of time between user
requests.Note: If the underlying session expires, the cookie is removed or the sign in expires before the
idle time specified inidle the user will be signed out.

158 Chapter 1. Web Modules

templateA string containing%(form)s and%(message)s for dictionary replacement of the sign in form
and error message respectively.

redirectMethodDetermines how the application should redirect back to the original code once a user is signed
in. The default is HTTP redirection specified withredirectMethod=’http’but alternatively a META refresh
can be used,redirectMethod=’metaRefresh’Warning: There currently appears to be a bug in the WSGI
Server preventing HTTP redirection from working so META refresh redirection should be used.

Entries added toenviron:

environ[’web.auth’] An AuthManager object as returned by web.auth.manager()

environ[’web.auth.user’] A user object for the current signed in user

environ[’REMOTE USER’] The username of the signed in user

The example below demonstrates how to check if a user is signed in and if they are not signed in, provide them with a
sign in form and handle the submissions until they are signed in.

import sys; sys.path.append(’../’)
from web.wsgi import *

def simpleApp(environ, start_response):
if not environ.has_key(’web.auth.user’): # No user signed in

start_response(’403 User not signed in’, [])
return []

elif not environ[’web.auth.user’].authorise(app=’app’, level=1):
start_response(’403 The user does not have permission to access this application’, [])
return []

else:
start_response(’200 OK’, [(’Content-type’,’text/html’)])
if environ[’web.cgi’].has_key(’mode’) and environ[’web.cgi’][’mode’].value == ’signOut’:

environ[’web.auth’].signOut()
return ["""<html>

<head><title>Auth Example</title></head>
<body bgcolor="#ffffcc"><h1>Signed Out</h1><p>Sign in</p></body>
</html>"""]

else:
return ["""<html>

<head><title>Auth Example</title></head>
<body bgcolor="#ffffcc"><h1>Congratulations!</h1>
<p>Signed in!</p>
<p>Sign out, Visit again</p>
</body></html>"""]

Middleware Setup
application = error.Error(

database.Database(
session.Session(

cgi.CGI(
auth.Auth(

simpleApp,
driver=’database’,
autoCreate=1,
expire=0,
idle=10,
template = """

<html>
<head><title>Auth Example</title></head>
<body bgcolor="#ffffcc">

1.14. web.wsgi — Web Server Gateway Interface tools 159

<h1>Sign In</h1>
%(form)s
<p>%(message)s</p>
</body>
</html>

""",
redirectMethod=’metaRefresh’

),
),
expire = 1000,
autoCreate = 1,
driver=’database’,

),
adapter = ’snakesql’,
database = ’wsgi-auth’,
autoCreate = 1

),
)

The message displayed under the sign in box is whatever you specify as the message after403 in the status of
start response() .

You can test this example by running the WSGI server ‘scripts/WSGIServer.py’ and visitinghttp://localhost:8000/auth

1.14.4 Writing Applications

Below is a full example with a lot of functionality. It can be used as a base for your own applications.

import sys; sys.path.append(’../’)
from web.wsgi import *
import web.database.object, os

links = """<p>Sign out |
View |
Add</p>"""

def simpleApp(environ, start_response):

person = web.database.object.Table("Person")
person.add(column="String", name=’firstName’, required=True)
person.addColumn(web.database.object.String(name="surname"))
person.addColumn(

web.database.object.StringSelect(
name="profession",
options=[None, ’Developer’, ’Web Developer’],
displayNoneAs=’Not Specified’

)
)
person.add(column="Bool", name=’sex’, displayTrueAs=’Male’, displayFalseAs=’Female’)
database = web.database.object.Database()
database.addTable(person)

Initialise the database
database.init(environ[’web.database.cursor’])

if not database.tablesExist():
database.createTables()

160 Chapter 1. Web Modules

mode = ’view’
if environ[’web.cgi’].has_key(’mode’):

mode = environ[’web.cgi’][’mode’].value

signIn mode needed to allow for sign in handling
you will be redirected to the correct place eventually
if mode == ’signIn’:

start_response(’403 User not signed in’, [])
environ[’web.database.connection’].commit()
return []

elif mode == ’signOut’:
start_response(’403 User not signed in’, [])
environ[’web.database.connection’].commit()
return []

elif mode == ’add’:
if not environ.has_key(’web.auth.user’): # No user signed in

start_response(’403 User not signed in’, [])
environ[’web.database.connection’].commit()
return []

else:
result = []
form = database[’Person’].form(stickyData={’mode’:’add’})
if len(environ[’web.cgi’]) > 1: # Assume form submitted

form.populate(environ[’web.cgi’])
if form.valid():

entry = database[’Person’].insert(all=form.dict())
result.append(’’’<html><h1>Entry Added</h1>%s

<p>Go Back</html>’’’%(form.frozen())
)

else:
result.append("""<html>%s<h1>Error</h1><p>There were some invalid fields.

Please correct them.</p>%s</html>"""%(links, form.html())
)

else:
result.append("""<html>%s<h1>Add Entry</h1>%s</html>"""%(links, form.html()))

start_response(’200 OK’, [(’Content-type’,’text/html’)])
environ[’web.database.connection’].commit()
return result

else:
entries = ’<table border="1"><tr style="font-weight: bold;"><td>Firstname</td>’
entries += ’<td>Surname</td><td>Profession</td><td>Sex</td></tr>’
for row in database[’Person’].values():

entries += ’<tr><td>%s</td><td>%s</td><td>%s</td><td>%s</td></tr>’%(
row[’firstName’],
row[’surname’],
row[’profession’],
row[’sex’]

)
entries += ’</table>’
info = """The table above shows people entries. To add an entry, click the add link above
but you will need to sign in using the username <tt>john</tt> and the password <tt>bananas</tt>.
If you don’t visit a page you will be signed out after 20 seconds and have to sign in again."""
start_response(’200 OK’, [(’Content-type’,’text/html’)])
environ[’web.database.connection’].commit()
return ["<html>%s<h1>Entries</h1><p>%s</p><p>%s</p></html>"%(links, entries,info)]

Middleware Setup
application = error.Error(

1.14. web.wsgi — Web Server Gateway Interface tools 161

database.Database(
session.Session(

cgi.CGI(
auth.Auth(

simpleApp,
driver=’database’,
autoCreate=1,
expire=0,
idle=20,
template = """

<html>
<head><title>Sign In</title></head>
<body>
%s
<h1>Sign In</h1>
%%(form)s
<p>%%(message)s</p>
</body>
</html>

"""%links,
redirectMethod=’metaRefresh’

),
),
expire = 1000,
autoCreate = 1,
driver=’database’,

),
adapter = ’snakesql’,
database = ’wsgi-example’,
autoCreate = 1

),
)

You can test this example by running the WSGI server ‘scripts/WSGIServer.py’ and visiting
http://localhost:8000/example

Note: The authour of the web modules is currently building a framework called Bricks which will automate many of
the tasks involved in manually writing an application such as the one above.

1.14.5 Writing Your Own Middleware

See first the WSGI Middleware Introduction earlier in this document.

Eariler in this document we saw some simple middleware components and learned that for an object to be valid WSGI
middleare it must take a WSGI application object as parameter and behave exaclty like a WSGI application itself.

With long middleware chains and functions being passed as parameters down the chain it can get a bit confusing to
keep track of program flow.

Program flow is actually very straightfoward. The first piece of middleware is run first, any changes to theenviron
dictionary are passed on to the next piece of middleware and so on down the chain. Once thestart response
function is called by the application at the end of the chain, thestatus , headers and application output are sent
back up the chain to the server where they are sent to the web browser.

Here is a test application demonstrating middleware and program flow (the headers are not valid HTTP headers obvi-
ously):

#!/usr/bin/env python

162 Chapter 1. Web Modules

import sys; sys.path.append(’../../../’)
import web.wsgi.base, time

class Application(web.wsgi.base.BaseApplication):
def start(self):

self.output(’Environ Order:\n’)
self.environ[’Application’] = time.time()
time.sleep(1)
self.headers.append((’Appliction’,str(time.time())))
self.output(’Middleware1 ’,self.environ[’Middleware1’])
self.output(’\n’)
self.output(’Middleware2 ’,self.environ[’Middleware2’])
self.output(’\n’)
self.output(’Application ’, self.environ[’Application’])
self.output(’\n’)

class Middleware1(web.wsgi.base.BaseMiddleware):
def environ(self, environ):

time.sleep(1)
environ[’Middleware1’] = time.time()
return environ

def headers(self, headers):
time.sleep(1)
headers.append((’Middleware1’,str(time.time())))
return headers

def transform(self, output):
return output + [’Middleware1\n’]

class Middleware2(web.wsgi.base.BaseMiddleware):
def environ(self, environ):

time.sleep(1)
environ[’Middleware2’] = time.time()
return environ

def headers(self, headers):
time.sleep(1)
headers.append((’Middleware2’,str(time.time())))
return headers

def transform(self, output):
return output + [’Middleware2\n’]

print "Running test..."
application = web.wsgi.runCGI(Middleware1(Middleware2(Application())))

The program will not run from a WSGI server because of the incorrect HTTP headers but you can run it from the
command line. The output should look something like this:

1.14. web.wsgi — Web Server Gateway Interface tools 163

Status: 200 OK
Content-type: text/html
Appliction: 1105847968.69
Middleware2: 1105847969.69
Middleware1: 1105847970.69

Environ Order:
Middleware1 1105847966.68
Middleware2 1105847967.69
Application 1105847967.69

Transform Order:
Middleware2
Middleware1

You can see thatenviron is modified byMiddleware1 thenMiddleware2 thenApplication . Headers and
return transforms are made in exactly the opposite order.

At each stage of the application and middleware chain the component can either return an list of strings in one go or
return an iterable.

We also learned earlier that WSGI middleware can be implemented as a class and usually performs one of the following
actions or a combination of them.

• Change theenviron dictionary

• Change the application’sstatus

• Change the HTTPheaders

• Change the return value of the application

Theweb.wsgi.base module provides a base Middleware class with methods to accomplish these tasks so that you
don’t need to worry quite so much about program flow or how to implement your middleware.

classBaseMiddleware (application)
applicationshould always be the first parameter to a derived middleware class, but you may also wish to have
other parameters in derived classes to allow the middleware to be configured.

Warning: It is important you carefully read the documentation for theinit () andsetup() methods
to understand where to configure variables.

The class defines the following attributes:

application
The WSGI application (or middleware stack) to which this middleware should be added.

The class defines the following methods:

init (application)
You can override the init () method but the first parameter should always be for the application
object. Parameters used to configure the class at load time can be specified in theinit () method
but any variables which need to be reset every time the middleware is used should be specified in the
setup() method. This is because a WSGI server only loads the middleware once but runs it lots of times
so if a variable is specified in the init () method it would only be set once and on subsequent calls
would retain the value from the previous call.

setup ()
Thesetup() method is used to configure any class attributes which need to be configured every time the
middleare is run and not just when the middleare is loaded. See the documentation for theinit ()
method too.

164 Chapter 1. Web Modules

call (environ, start response)
You should not need to modify this method but is documented here for a complete understanding as it
provides the functionality which makes derived classes WSGI middleware.

The fitst task of this method is to callsetup() to re-initialise any variables which need to be set every
time the class is run. It then intercepts theenviron dictionary as well as theheaders andstatus
parameters sent by the WSGI server to thestart response() function. It then sends theenviron
dictionary to theenviron() method for modification. Thestatus , headers andexc info pa-
rameters are sent to theresponse() method which controls the order in which the different parame-
ters are modified. Theresponse() method sends the parameters to thestatus() , headers and
exc info() methods for modification. The new values are then returned to thecall where a
modified application object is returned.

response (status, headers,[exc info=None])
Calls thestatus() , headers andexc info() methods to modify the respective parameters then
returns the modified values in the orderstatus, headers, exc info to the call () method. Can be
over-ridden to change the order in which the parameters are modified.

environ (environ)
Provides the dictionaryenviron for modification. Must return theenviron dictionary to be passed on
down the middleware chain.

status (status)
Provides thestatusstring for modification. Must return thestatus string to be passed on down the
middleware chain.

headers (headers)
Provides theheaderslist for modification. Must return theheaders list to be passed on down the mid-
dleware chain.

exc info (exc info)
Provides theexc info tuple object generated by a previous error (if one exists) for modification. Must
return theexc info tuple to be passed on down the middleware chain.

result (result)
Used to transform the body of output returned from the previous item in the middleware stack.

Be aware that you may need to have checked content-type headers and change the content length header if
it is set if you intend to change the length of the returned information.

result is an iterable and an iterable should be returned from the output.

To produce your own middleware class, simply over-ride the appropriate methods in your class derived from the
BaseMiddleware class. If you wish to pass information between the various methods, you should set member
variables of the class which can then be read by all the methods. You can change the order in which some of the
methods are called by overridingresponse() and calling the methods in the order you wish.

For some examples of how to write middleware comonents using this class look at the source code of theweb.wsgi
middleware classes.

1.14. web.wsgi — Web Server Gateway Interface tools 165

166

APPENDIX

A

Reporting Bugs

Please email bugs at pythonweb.org

167

168

APPENDIX

B

History and License

B.1 History of the software

Python Web Modules are released under the GNU LGPL

169

170

MODULE INDEX

D
datetime , 19

W
web, 1
web.auth , 2
web.database , 22
web.database.object , 73
web.environment , 107
web.error , 99
web.form , 109
web.form.field.basic , 112
web.form.field.extra , 115
web.form.field.typed , 114
web.image , 120
web.mail , 122
web.session , 124
web.template , 136, 141
web.wsgi , 145

171

172

INDEX

Symbols
call () (callable method), 165
getitem () (method), 95, 97, 111
getitem () (bool method), 70
init () (callable method), 164

cleanupProbability (Float attribute), 133
deleteCookieString() (method), 135
function() (method), 68
seed (String attribute), 133
setCookieString() (method), 135

A
active (String attribute), 18
addAction() (method), 111
addApp() (method), 16
addColumn() (method), 96
addField() (method), 111
addGroup() (method), 17
addMultiple() (method), 96
addRelated() (method), 96
addRole() (method), 16
addSingle() (method), 96
addTable() (method), 94
addUser() (method), 16
app (String attribute), 135
appExists() (method), 16
application (dictionary attribute), 164
apps() (method), 16
AuthAdmin (class in web.auth), 15
AuthManager (class in web.auth), 18
authorise() (method), 18
AuthSession (class in web.auth), 17
AuthUser (class in web.auth), 18
autoCreated (Bool attribute), 15

B
baseCursor (attribute), 65
BaseMiddleware (class in web.wsgi), 164
baseType (attribute), 70

C
CGI (class in web.wsgi), 153
Checkbox (class in web.form.field.basic), 113
CheckBoxGroup (class in web.form.field.basic),

114
childTables (list attribute), 70
cleanup() (method), 134
close() (method), 64
code() (String method), 105
Column (class in web.database), 70
column()

method, 58, 68
bool method, 70

column (QueryBuilder attribute), 97
columnExists()

method, 96
bool method, 70

columns() (method), 96
columns (list attribute), 69
completeAuthEnvironment() (Bool method),

16
completeEnvironment() (method), 109
completeSessionEnvironment() (Bool

method), 133
connect() (in module web.database), 26, 63
connection (attribute), 65
context (Integer attribute), 104
Converter (class in web.database), 71
converter (attribute), 70
cookie (Dict attribute), 133
cookieSessionID() (String method), 134
count() (method), 61, 68
create()

method, 96
cursor method, 60, 67
String method, 133

createAuthEnvironment() (method), 16
createEnvironment() (method), 109
createSessionEnvironment() (method), 133
createTables() (method), 95
currentURL() (in module web.wsgi), 152

173

cursor() (in module web.database), 29, 64
cursor (cursor attribute), 95

D
Database

class in web.database.object, 94, 96
class in web.wsgi, 156

databaseToValue() (method), 71
date

class in datetime, 19
String attribute, 104

datetime
class in datetime, 20
extension module,19
module, 19

day (Integer attribute), 20
debug() (String method), 105
default (attribute), 70
delete()

method, 97, 135
cursor method, 58, 67

deleteCookie() (method), 135
description() (String method), 113
destroy() (String method), 134
dict() (method), 95, 96, 98, 111
Documents (class in web.wsgi), 156
driver() (in module web.environment), 108
drop()

method, 96
cursor method, 60, 68

dropTables() (method), 95

E
email (String attribute), 18
empty() (method), 135
encode() (in module web), 2
environ() (dictionary method), 165
EnvironmentDriver (class in web.environment),

109
enycryption (Bool attribute), 16
error() (String method), 113
error

Error tuple attribute, 104
String attribute, 133

ErrorInformation (class in web.error), 104
errorType (Error attribute), 104
errorValue (String attribute), 104
exc info() (Exception method), 165
execute() (method), 65
executemany() (method), 65
exists() (method), 96, 134
expire

attribute, 17
Integer attribute, 133

export() (method), 64, 69

F
fetchall() (method), 65
fetchone() (method), 65
Field (class in web.form.field.basic), 112
field() (method), 111
File (class in web.form.field.basic), 114
firstname (String attribute), 18
Form (class in web.form), 111
form()

method, 97
String method, 97

format (String attribute), 104
frozen()

method, 111
String method, 113

G
get() (method), 135
group (String attribute), 18
groupExists() (method), 17
groups() (method), 17

H
handle()

method, 19
in module web.error, 101

has key()
method, 95, 96, 98, 111, 135
bool method, 70

header() (in module web), 2
headers() (list method), 165
Hidden (class in web.form.field.basic), 113
hidden()

method, 111
String method, 113

hour (Integer attribute), 20
html()

method, 111
String method, 113

html2tuple() (in module web.image), 120

I
info (attribute), 65
init() (method), 94
Input (class in web.form.field.basic), 113
insert()

method, 96
cursor method, 55, 66

insertMany() (cursor method), 67
isoformat() (method), 21
isRelated() (method), 98

174 Index

items() (method), 95, 96, 98, 111, 135

K
key (attribute), 70
keys() (method), 95, 96, 98, 111, 135

L
levels() (method), 16
levels (Dict attribute), 18
load() (Bool method), 133

M
mail() (in module web.mail), 122
max() (method), 61, 68, 97
Menu (class in web.form.field.basic), 114
microsecond (Integer attribute), 20, 21
min() (method), 61, 68, 97
minute (Integer attribute), 20, 21
month (Integer attribute), 19, 20

N
name() (String method), 113
name

attribute, 70
String attribute, 95
string attribute, 69

now() (datetime method), 21

O
order() (method), 54, 69
ouput() (String method), 104
output() (method), 95

P
parentTables (list attribute), 70
parse() (in module web.template), 136
Password (class in web.form.field.basic), 113
password (String attribute), 18
populate()

method, 111
None method, 113

position (attribute), 70
primaryKey (string attribute), 70
pythonVersion (String attribute), 104

R
RadioGroup (class in web.form.field.basic), 114
relate() (method), 98
remove() (method), 111
removeApp() (method), 16
removeAuthEnvironment() (method), 16
removeEnvironment() (method), 109
removeGroup() (method), 17

removeRole() (method), 16
removeSessionEnvironment() (method), 133
removeUser() (method), 16
required (attribute), 70
Reset (class in web.form.field.basic), 113
response() (sequence method), 165
response headers (List attribute), 133
result() (Iterable method), 165
roleExists() (method), 16
roles() (method), 16
roles (Dict attribute), 18
Row(class in web.database.object), 97
row() (method), 97
rowExists() (method), 96
rowid (Integer attribute), 98
runCGI() (in module web.wsgi), 151
runWebServer() (in module web.template), 141

S
second (Integer attribute), 20, 21
Select (class in web.form.field.basic), 114
select() (method), 52, 66, 97
sendCookieHeaders() (method), 135
sent headers (List attribute), 133
Session (class in web.wsgi), 156, 158
sessionID (String attribute), 133
SessionManager (class in web.session), 132
set() (method), 135
setCookie() (method), 135
setError() (String method), 113
setExpire() (method), 134
setLevel() (method), 16
setRole() (method), 17
setup() (callable method), 164
signIn() (method), 17
SignInHandler (class in web.auth), 19
signOut() (method), 17
sql (attribute), 65
sqlQuotes (string attribute), 71
sqlToValue() (method), 71
status() (string method), 165
Store (class in web.session), 135
store() (Store Object method), 134
store (attribute), 17
strftime() (method), 21
strip() (in module web.template), 141
Submit (class in web.form.field.basic), 113
surname (String attribute), 18

T
Table (class in web.database), 69
table()

method, 95
in module web.template, 141

Index 175

table (attribute), 70
tablesExist() (method), 95
templateDict() (method), 112
TextArea (class in web.form.field.basic), 114
time (class in datetime), 20
timetuple() (method), 21
traceback() (String method), 104
type

attribute, 70
string attribute, 71

U
unique (attribute), 70
unrelate() (method), 98
update()

method, 98
cursor method, 56, 67

user() (method), 16, 18
userExists() (method), 16
userInfo() (method), 17
username() (method), 17
username (String attribute), 18
users() (method), 16

V
valid()

method, 134
Bool method, 111
True or False method, 113

value
List attribute, 114
String attribute, 113

values() (method), 95, 96, 98, 111, 136
valueToDatabase() (method), 71
valueToSQL() (method), 71

W
web (extension module),1
web.auth

extension module,2
module, 2

web.database (extension module),22
web.database.object (extension module),73
web.environment

extension module,107
module, 107

web.error
extension module,99
module, 99

web.error.error() (in module web.error), 104
web.error.info() (in module web.error), 101
web.form (extension module),109
web.form.field.basic (extension module),

112

web.form.field.extra (extension module),
115

web.form.field.typed (extension module),
114

web.image (extension module),120
web.mail (extension module),122
web.session (extension module),124
web.template (extension module),136, 141
web.wsgi (extension module),145
where() (method), 53, 69
wrap() (in module web.template), 141

Y
year (Integer attribute), 19, 20

176 Index

	1 Web Modules
	1.1 web --- Web modules
	1.2 web.auth --- Easy to use authorisation, authentication and user management system
	1.2.1 Background Information
	1.2.2 Creating a basic auth environment
	Adding Applications
	Adding Users
	Access Levels and Roles
	The easy way

	1.2.3 Authentication and Authorisation
	Checking Who Is Signed In
	The Sign In Handler
	Authenticating the Signed In User

	1.2.4 Simple Example
	1.2.5 Advanced Authorisation Options
	Using Roles
	Using Groups
	Disabling Accounts using active
	Example

	1.2.6 Encryption
	1.2.7 API Reference
	AuthAdmin Object
	AuthSession Object
	AuthManager Object
	AuthUser Objects
	Sign In Handler

	1.3 datetime --- Compatibility code providing date and time classes for Python 2.2 users
	1.3.1 Module-Level Functionality
	1.3.2 Compatibility with Python 2.3 and above

	1.4 web.database --- SQL database layer
	1.4.1 Background
	Example Code

	1.4.2 Introduction
	Understanding Field Types

	1.4.3 Connecting to a Database
	1.4.4 Using a Table Prepend
	1.4.5 Cursor Options
	1.4.6 Executing SQL
	1.4.7 Retrieving Results
	1.4.8 Transactions, Rollbacks and Committing Changes
	1.4.9 Exporting and Importing SQL
	1.4.10 Using the Interactive Prompt
	Starting the Prompt
	Using the Prompt

	1.4.11 Special Characters
	In Python
	Interactive Prompt
	In SQL
	The Easy Way

	1.4.12 SQL Reference
	The SELECT Statement
	The WHERE Clause
	The INSERT INTO Statement
	The UPDATE Statement
	The DELETE Statement
	ORDER BY
	AND & OR
	NULL Values
	CREATE
	DROP Table
	FOREIGN KEY and Joins

	1.4.13 Cursor Abstraction Methods
	Selecting Data
	Inserting Data
	Updating Data
	Deleting Data
	Creating Tables
	Dropping Tables
	Functions

	1.4.14 Supported Databases
	MySQL
	SQLite
	ODBC

	1.4.15 Example Code
	1.4.16 API Reference
	Module Interface
	Connection Objects
	Cursor Objects
	Table Objects
	Column Objects
	Converter Objects

	1.4.17 Developer's Guide
	Implementing the Classes
	Creating the Dictionary

	1.4.18 Tools Under Development
	Web Based Admin

	1.4.19 Future Additions

	1.5 web.database.object --- An object relation mapper built on the web.database and web.form modules
	1.5.1 Introduction
	Requirements
	Compared To Other Database Wrappers

	1.5.2 Introductory Example
	Full Code Listing
	Using Alternative Keys
	Available Columns

	1.5.3 One-To-Many Mappings
	Full Code Listing

	1.5.4 Many-To-Many Mappings
	Full Code Listing

	1.5.5 Building Queries
	How It Works
	Supported Operators
	Supported Functions
	Full Code Listing

	1.5.6 Creating Forms/Tables
	Full Code Listing

	1.5.7 Creating Tables by Defining Classes
	1.5.8 Other Useful Features
	1.5.9 Class Reference
	The Database Object
	The Table Object
	The Row Object

	1.5.10 Future

	1.6 web.error --- Enhanced error handling based on the cgitb module
	1.6.1 Basic Usage
	1.6.2 Using The info() Function
	1.6.3 Using The handler() Function
	1.6.4 Using The error() Function
	1.6.5 Creating Custom Handlers
	1.6.6 Example
	1.6.7 Debugging Code

	1.7 web.environment --- Tools for seting up an environment
	1.7.1 Example
	1.7.2 API Reference

	1.8 web.form --- Construction of persistant forms/wizards for HTML interfaces
	1.8.1 Introduction
	1.8.2 Form Objects
	1.8.3 Creating Custom Forms
	1.8.4 Fields
	web.form.field.basic --- Various fields for use with web.form
	web.form.field.typed --- Typed fields for use with web.form and web.database.object
	web.form.field.extra --- Extra fields for use with web.form

	1.8.5 Basic Fields Example
	1.8.6 Typed Fields Example

	1.9 web.image --- Create and manipulate graphics including JPG, PNG, PDF, PS using PIL
	1.9.1 web.image.graph --- Create graphs
	1.9.2 Command Line Example
	1.9.3 Webserver Example

	1.10 web.mail --- Simple function to send email using email
	1.10.1 Example

	1.11 web.session --- Persistent storage of sessions and automatic cookie handling
	1.11.1 Background Information
	The HTTP Protocol is Stateless
	Session IDs
	Information Storage
	Multiple Applications
	The HTTP Protocol and Cookie Handling

	1.11.2 Session Module Overview
	1.11.3 Creating a basic session environment
	1.11.4 Loading a Session
	1.11.5 Multiple Applications and Stores
	1.11.6 Using Stores
	1.11.7 Managing Sessions
	Checking Session Existence or Validity
	Destroying Sessions
	Cleaning Up Expired Sessions
	Changing the Expire Time of a Session

	1.11.8 Custom Cookie Handling
	1.11.9 Web Server Gateway Interface Middleware
	1.11.10 Implementing a new Driver
	1.11.11 Example
	1.11.12 API Reference
	Manager Objects
	Store Objects

	1.12 web.template --- For the easy display of data as HTML/XML
	1.12.1 Cheetah Template
	1.12.2 XYAPTU Templating
	1.12.3 Dreamweaver MX

	1.13 web.util --- Useful utility functions that don't fit elsewhere
	1.13.1 Creating Tables
	1.13.2 Calendar Tools

	1.14 web.wsgi --- Web Server Gateway Interface tools
	1.14.1 Introduction
	What is a WSGI application?
	What Are Middleware Components?
	Callables, Classes or Functions?
	Difficulties with WSGI Applications
	The PythonWeb WSGI Server
	web.wsgi Functions

	1.14.2 Understanding Middleware
	1.14.3 The PythonWeb Middleware Components
	web.wsgi.cgi -- CGI Variable Access
	web.wsgi.error -- Error Handling
	web.wsgi.error.documents -- Error Documents
	web.wsgi.database -- Database Access
	web.wsgi.session -- Session Handling
	web.wsgi.auth -- User Permission Handling

	1.14.4 Writing Applications
	1.14.5 Writing Your Own Middleware

	A Reporting Bugs
	B History and License
	B.1 History of the software

	Module Index
	Index

