Module Reference

James Gardner

January 31, 2005

http://www.pythonweb.org
docs at pythonweb.org

Copyright(© 2001, 2002, 2003, 2004, 2005 James Gardner. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

This manual provides a detailed reference of each of the modules which make up the Python Web Modules.
For an overview of the modules, their purpose and licenc&®seeview of the Python Web Modules

Warning: This version of the modules has undergone many changes and should be considered a development
release, likely to contain some bugs.

CONTENTS

1 Web Modules 1
1.1 web—Webmodules 1
1.2 web.auth — Easy to use authorisation and user managementsystem 2
1.3 datetime — Compatibility code providing date and time classes for Python 2.2 users . . 12
1.4 web.database — SQL databaselayer 15
1.5 web.database.object — An object relation mapper built on theeb.database and

web.form modules. L e 58
1.6 web.error — Enhanced error handling based ontiggbh module 82
1.7 web.environment — Tools for setingupanenvironment 89
1.8 web.form — Construction of persistant forms/wizards for HTML interfaces. 90
1.9 web.image — Create and manipulate graphics including JPG, PNG, PDF, PSiBHing . . . 100
1.10 web.mail — Simple function to send email usimgnail 102
1.11 web.session — Persistent storage of session and automatic cookie handling. 104
1.12 web.template — For the easy display ofdataas HTML/XML. 118
1.13 web.utii — Useful utility functions that don't fitelsewhere. 122
1.14 web.xml — XSLT Transform e 124
1.15 web.wsgi — Web Server Gateway Interfacetools 125

A Reporting Bugs 141

B History and License 143
B.1 Historyofthesoftware e 143

Module Index 145

Index

CHAPTER
ONE

Web Modules

The Web Modules are a series of useful librares for building web applications without the need to learn a frame-
work.

1.1 web — Web modules

Theweb module provides some basic utility functions and objects which are used throughout the Web Modules.
Version Information

Theweb module has the following variables:

web.version _info A tuple similar tosys.version _info in the form(major version, minor
version, revision, release candidate, status)

web.version The version as a string €9.4.0rcl’
web.name The name of the modules as a string
web.date The date of the release as a string in the foripaty-mm-dd’

web.status The release status of the code. For exantipéa’

Useful Objects

Theweb module provides the following objects:

web.cgi An object based on the cgi.FieldStorage() object.

The web.cgi object is used to access CGI environment variables such as information submitted from
forms or appended to a URL or information about the user’s browsss.cgi provides a dictionary-like
interface to all the sumbitted CGI variables.

Warning: Creating acgi.FieldStorage object can destroy data that would be used in subsequent
creating subsequenyi.FieldStorage objects so you should only use theb.cgi object which

will be created first in order to avoid this problem.

See Also:

cgi Module Documentation

(http://www.python.org/doc/current/lib/module-cgi.html)
The cgi module documentation distributed with Python has more information about
cgi.FieldStorage objects and a full functional specification.

Useful Functions

header ([type:’text/html’])
Returns a Content-type HTTP header

typ€eTlhe content-type to output

encode (html[, mode='url’])
Encode a string for use in an HTML document

htmIThe string to encode
moddf modeis 'url’ thehtml string is encoded for use in a URL. ifiodeis 'form’ htmlis encoded
for use in a form field.

Warning: The HTTP protocol doesn't specify the maximum length of URLs but to be absolutely
safe try not to let them be longer than 256 characters. Internet Explorer supports URLs of up to
2,083 characters. Any long strings are better off encoded to be put as hidden values in a form with
method="POST" rather than encoded and embedded in URLs. Information sent B€&Jis sent

in the HTTP header where there is no limit to the length.

Another reason not to encode larege amounts if information in URLSs is that doing so may also result
in strange behaviour in certain browsers.

1.2 web.auth — Easy to use authorisation and user management
system
Theweb.auth module provides methods for allowing multiple users multiple access levels to multiple applica-

tions using a single login. It offers a poweful, flexible and simple way to restrict or manage access to different
parts of your code.

1.2.1 Background Information

Theweb.auth module performs three main tasks and can be thought of as three separate parts in the same
module. These tasks are:

e Check whether a user is signed in and has permission to use an application.

¢ Provide tools to enable new users and applications to be setup and modified.

e Provide a mechanism where login attempts can be handled through a web based interface.
In order to fulfil these tasks four different types of object are provided byvfeauth module. These are:

Driver These provide the interface to the storage medium foAtitiSession andAuthManager objects.
For example théatabaseAuthDriver object is used to allow auth information to be stored in SQL
databases.

AuthSession These objects use thweeb.session session module to store and manage information about
who is currently signed in.

AuthManager These are the objects are used to manage the application and user information. For example to
add applications and users, test if applications or users exist and change passwords.

Handlers These objects are found in theeb.auth.handlers sub package and are designed to help to auto-
mate tasks such as providing a sign in form, checking details and signing in users to reduce the code needed
to be written for each application.

If you simply want to password protect a CGlI script there is alseel.auth.start() function to handle
everything for you, but most of the time you will want control over the process yourself.

If you simply want to get started using the module quickly there is an example later on in the documentation
demonstrating some important features and a full API reference.

2 Chapter 1. Web Modules

1.2.2 Drivers

Theweb.auth module is designed so that the data can be stored in lots of different ways through the use of
different drivers. Currently only a database storage driver exists which allows session information to be stored
in any relational database supported by Web.database module. Theweb.database module includes
SnakeSQL, a pure Python database which works like a library, so you can uselitsession module even

if you do not have access to another relational database engine.

To use theAuthSession andAuthManager objects we need to obtain a valiitiver object. This is done
as follows:

import web, web.database, web.auth

connection = web.database.connect('mysql’, database='test’)
cursor = connection.cursor()

driver = web.auth.driver('database’, environment="testEnv’, cursor=cursor)

In this example we are using a database to store the session information so we setup a database cursor
namedcursor as described in the documentation for theb.database module and use it to pass to the
web.session.driver() method.

The environmenfparameter is the name of the environment to be used (see the next section for information on
environments).

1.2.3 The Environment

Environments are described in the documentation fonise.environment module but are effectively groups

of applications which share users and sessions. Specifically the name speddimitanmenparameter of the
web.auth.driver() function is the name prepended to all database tables using that environment so that
multiple environments can be used in the same database (useful if you are using a shared web host and only have
access to one database). It is also the name used to identify the session ID in any cookigls $besion

module uses.

In order to use theveb.auth module the environment must be setup correctly. In the case of database drivers
this simply means the relevant session tables must exist. If you intend to useethsession module

you can setup the environments for theb.auth andweb.session modules at the same time using the
web.environment module. If you just want to setup an auth environment you can so do throudithes

object.

OurDriver object from the previous section is namdriber and we have already createdab.database
cursor namedursor . Have a look at this example:

if not driver.completeAuthEnvironment():
driver.removeAuthEnvironment(ignoreErrors=True)
errors = driver.createAuthEnvironment()
if errors:
raise Exception('The environment was not sucessfully created’)
connection.commit()

If none or only some of the tables are present we drop all the existing tables (ignoring errors produced because of
missing tables) losing any information they contain and recreate all the tables.

Note: We need to check to see if any errors occured since they are not automatically raised.

We also need to commit our changes to the database so that they are savednsewion.commit()

1.2. web.auth — Easy to use authorisation and user management system 3

1.2.4 Obtaining Access to the Auth Session Information

Theweb.auth module use aveb.seesion store namethuth’ to hold information about the current signed
in user. This means we need to setupwed.seesion objects before we can access the information. See the
web.session module for full details.

Obtain a session store
import web.session
driver = web.session.driver('database’, environment="testEnv’, cursor=cursor)

if not driver.completeSessionEnvironment():
driver.removeSessionEnvironment(ignoreErrors=True)
driver.createSessionEnvironment()

manager = web.session.manager(driver=driver)
if not manager.load():

manager.create()
store = manager.store('auth’)

Once we have a valid session store we can creAigldSession object as follows:

authSessionManager = web.auth.session(store, expire=0, idle=10)

Theweb.auth.session() function takes a number of parameters and is documented at the end of this section.

In particularexpireis the maximum length of time a user can be signed in for. If this is O it means the user can be

signed in indefinately (although practically the session fromateb.session itself will not last forever).idle

is the maximum length of time a user can be signed in for without visiting the site. Again a value of 0 means there
is no limit.

1.2.5 Administering The Auth Environment

In order to access application and user information you need to créaténilanager object. This can be done
as follows:

driver = web.auth.driver('database’, environment="testEnv’, cursor=cursor)
authManager = web.auth.manager(driver=driver, app='app’)

Once the object is created you can use its methods to add new users and applications.

Note: As well as creating an applicaiton and a user yaust link the two by using thesetAccessLevel()
method so that the user has access to the application.

Adding Applications

To add an application to the auth environment you usattdpplication() method of theauthManager
object returned byuth.setup()

For example, using theuthManager object created in the example above:

authManager.addApplication('app’)

4 Chapter 1. Web Modules

Adding Users

To add a user to the auth environment you usesith@User() method of theauthManager object returned
by auth.setup()

TheaddUser() method takes the parameteisernamepassword firsthname surnameemail Only username
andpasswordare required.

using theauthManager object created in the example above:

authManager.addUser(test’, '123’)
authManager.addUser(
‘john’,
‘bananas’,
‘John’,
'Smith’,
‘johnsmith@example.com’

Setting Access Levels
You can set the access level for a particular user or applicaiton usirggtAecessLevel() method of the
authManager object returned byauth.setup()

Access levels should be positive integers. An access leehtdans the user doesn’t have access to the particular
application.

For example:

authManager.setAccessLevel(john’, 'app’, 1)

1.2.6 Checking Who Is Signed In

Once we have created thathSsessionManager we can get the username of the current signed in user using
authSsessionManager.username() . This method returns an empty string if no user is signed in.

username = authSsessionManager.username()

Usernames are case insensitive but are always stored in the driver as lowercase.

We then need to double check the user exists. We do this usinfutidlanager object created in the section
on administering the auth environment.

if username and authManager.userExists(username):
user = authManager.getUser(username)
print 'Username %s is signed in'%user.username

The object returned by theuthManager.getUser() method has the following properties:

classUser
Stores read only information about a user. You cannot set the values of the user with this class. Instead you
should use the manager object described earlier in the documentation.

username
The username of the user. Usernames are case insensitive but are always stored and returned as low-
ercase. This means that if you want to compare a username from a database with a value entered

1.2. web.auth — Easy to use authorisation and user management system 5

by a user, you should first convert the value entered by a user to lowercase likestiname =
username.lower()

password
The user’s password, 1-255 characters.

firstname
The user’s firstname, 1-255 characters. Optional

surname
The user’s surname, 1-255 characters. Optional

email
The user’'s email address, max 255 characters. Optional

level
The access levels for the applications the user has access to as a dictionary with application names as

keys.

accesslLevel
The access level the user has to the current application.

1.2.7 Automatically Handling Sign In Attempts

Sign in attempts can be automatically handled usingitile.auth module’s handlers. Th8igninHandler
object takes two parametersgessiorand managerwhich should be validduthSession and AuthManager
objects respectively.

The SigninHandler object has one methdtandle() which returns a form if there is a problem Hone
if the user has been signed in. TBgninHandler object has one attributsstatus which is a constant
specifying the current sign in status.

Here is an example.

Try to login
import web.auth.handler.signin
signinHandler = web.auth.handler.signin.SigninHandler(
session = authSession,
manager = authManager,
)
form = signinHandler.handle()
if form:
Display the error form
print '<html><body><h1>Please Sign In</h1>%s<p>%s</p></body></html|>'%form
else:
We have just signed in
print 'Signed in successfully’

1.2.8 Using Roles

Insetead of using auth levels, you might prefer to use roles. For example you coulddsetser and
administrator as different roles. This can be emulated using bitwise operations. Thanks to Cecil Westerhof
for pointing this out. Consider the variables below:

basicUser = 1
administrator = 2
role3 4

role4 8

6 Chapter 1. Web Modules

Someone withbasicUser and administrator would have accessLevel 5. Someone vatdsicUser
administrator androle3 would have accessLevel 11.

To determine if someone has access to a particular role you can evalleee &AccessLevel . If the result
is True the user has access to the particular role. For example to determine if a user is an administrator we could
do the following:

if administrator & user.accessLevel:
print "User is an administrator"
else:
print "User is not an administrator"

1.2.9 Examples

Putting together everything in the previous sections gives us this full application:
#!/usr/bin/env python
""Auth Example. Username=john and Password=bananas (Case sensitive)""

show python where the modules are

import sys; sys.path.append(’../"); sys.path.append(’../../..I")
import web.error; web.error.enable()

import web, web.database

Setup a database connection

connection = web.database.connect(
adapter="snakesq!",
database="webserver-auth",
autoCreate = 1,

)

cursor = connection.cursor()

Obtain a session store
import web.session
driver = web.session.driver('database’, environment="testEnv’, cursor=cursor)

if not driver.completeSessionEnvironment():
driver.removeSessionEnvironment(ignoreErrors=True)
driver.createSessionEnvironment()

manager = web.session.manager(driver=driver)
if not manager.load():
manager.create()

Obtain Auth objects
import web.auth
authSession = web.auth.session(manager.store('auth’), expire=0, idle=10)
driver = web.auth.driver('database’, environment="testEnv’, cursor=cursor)
authManager = web.auth.manager(driver=driver, app='app’)
if not driver.completeAuthEnvironment():
driver.removeAuthEnvironment(ignoreErrors=True)
driver.createAuthEnvironment()
authManager.addApplication('app’)
authManager.addUser(
‘john’,
‘bananas’,
"John’,
'Smith’,
'johnsmith@example.con’,

1.2. web.auth — Easy to use authorisation and user management system 7

)

authManager.setAccessLevel(john’, 'app’, 1)

Get the username of the current logged in user from the session
print web.header()
username = authSession.username()
if username and authManager.userExists(username):
user = authManager.getUser(username)
print 'Username %s is signed in'%user.username
else:
Try to login
import web.auth.handler.signin
signinHandler = web.auth.handler.signin.SigninHandler(
session = authSession,
manager = authManager,
)
form = signinHandler.handle()
if form:
Display the error form
print '<html><body><h1>Please Sign In</h1>%s</body></html>"%form
else:
We have just signed in
print 'Signed in successfully’

connection.commit()
connection.close()

You can test this example by starting the test webserver duripts/iwebserver.py’ and visiting
http://localhost:8080/doc/src/lib/webserver-web-auth.py on your local machine. The usernamgain and the
password i9ananas .

A simpler version using theveb.auth.start() function is here:
#!/usr/bin/env python
""Auth Example. Username=john and Password=bananas (Case sensitive)""

show python where the modules are

import sys; sys.path.append(’../’); sys.path.append(’../../..I")
import web.error; web.error.enable()

import web, web.database

Setup a database connection

connection = web.database.connect(
adapter="snakesql",
database="webserver-auth-simple",
autoCreate = 1,

)

cursor = connection.cursor()
import web.auth

If the auth environment is created, setup some information
def setup(userManager):
userManager.addApplication('app’)
userManager.addUser(
‘john’,
'bananas’,
'John’,
"Smith’,
‘johnsmith@example.con’,

)

userManager.setAccessLevel(john’, 'app’, 1)

8 Chapter 1. Web Modules

Create the auth objects

error, user = web.auth.start(
app="test’,
environmentName="testEnv’,
environmentType='database’,
Cursor = cursor,
expire=10,
setupSessionEnvironment=1,
setupAuthEnvironment=1,
setup = setup, # using the setup function above
stickyData = {testVar'True’},
action = 'webserver-web-auth-simple.py’,
redirect = '/’

)

print some output
if error:

print error # Error contains a form to display to allow users to sign in
else:

print 'User %s is signed in.” % user.username

connection.commit()
connection.close()

You can test this example by starting the test webserver duripts/iwebserver.py’ and visiting
http://localhost:8080/doc/src/lib/webserver-web-auth-simple.py on your local machine. The usernamgoln and
the password ibananas .

1.2.10 Function Reference
The start() Function

Theweb.auth.start() function has the following parameters:

start (app, enwronmentNarﬁe environmentType= databas]a[sessionManager= Nor]é expire=0
idle=0 setuHJSessmnEnwronment QsetulpAuthEnvwonment , templat templatecht

setup = Nong| , action =][stickyData —] redirect=Non **enwronmentParam)
Warning: Because more options may be specified in future versions of this function you should not rely on

the order of these parameters. Instead they should be specified with the parameter nanvesigd as is
used in the examples in this documentation.

apprhe name of the application.
environmentNam&he name of the environment
environmentTyp&he type of environment, currently can only database’

**environmentParam#ny other parameters needed to correctly specify the environment. For example, if
you are using &atabase’ environment type you will also need to speaifyrsor.

sessionManagek valid web.session manager object. If not specified, one is created using the default
options for a CGI environment.

expireAn integer specifying the number of seconds before the user is signed out. A value of 0 disables the
expire functionality and the user will be signed in until they sign dldte: If the underlying session
expires, the cookie is removed or the sign in idles before the expire time speciéegirathe user
will be signed out.

idleAn integer specifying the maximum number of seconds between requests before the user is automati-
cally signed out. A value of 0 disables the idle functionality allowing an unlimited amount of time
between user requestNlote: If the underlying session expires, the cookie is removed or the sign in
expires before the idle time specifiedidie the user will be signed out.

setupSessionEnvironmewithether to automatically setup a session environment if one is not already
present. Warning: If set to True and only some of the required tables are present in the envi-
ronment, all the session tables will be removed and recreated, losing all the contents. Currently no
checking of whether the tables contain the correct fields is done.

1.2. web.auth — Easy to use authorisation and user management system 9

setupAuthEnvironmenriiVhether to automatically setup an auth environment if one is not already present.
Warning: If settoTrue and only some of the required tables are present in the environment, all the
auth tables will be removed and recreated, losing all the contents. Currently no checking of whether
the tables contain the correct fields is done.

templatéAn HTML template in which to display the form. Must have %(form)s somewhere in the template.
templateDicA dictionary of other variables to be embedded into the template

stickyDat&A dictionary of key, value pairs to be stored as hidden fields in the sign in form.

redirectA URL to redirect to after sign in. XXX Currently not working?

redirectA URL to redirect to after sign in. XXX Currently not working?

actionThe action of the form. i.e. the URL of script to send the sign in data to.

setupA function definition taking dAuthManager object as its only parameter which can be used to setup
auth data if the auth environment is created.

Driver Objects

driver (driver, environment, **paranjs
Used to return @river object.

driverThe type of driver being used. Currently ontlatabase’ is allowed

environmen®he name of the environment being used. In the case of the database driver this is the string
prepended to all the tables used in the environment so that multiple environments can share the same
database.

**paramsAny parameters to be specified in the formame=valuevhich are needed by the driver specified
by driver

classDriver
Driver objects have a number of methods which driver implementers must implement. These are docu-
mented in the source code. The following public methods are used to setup the environment.

completeAuthEnvironment 0
ReturnsTrue if the environment is correctly setupalse otherwise. In the case of the database
driver this method simply checks that all the necessary tables exist.

createAuthEnvironment 0

Creates the necessary environment. In the case of the database driver this method creates all the
required tables. If any of the tables already exist an error string is returned.

removeAuthEnvironment ([ignoreErrors:FaIsﬂ)
Removes the environment. In the case of the database driver this method drops all the tables. If any of
the tables are not present a list of errors is returned uidesseErrorsis True

AuthSession Objects

The web.auth.session() function has the following parameters and is used to creatathSession
onject:
sesssion (store,[expire:O], [idle:O]) store

A valid web.session Store object.

expireAn integer specifying the number of seconds before the user is signed out. A value of O disables the
expire functionality and the user will be signed in until they sign dldte: If the underlying session
expires, the cookie is removed or the sign in idles before the expire time speciéegirathe user
will be signed out.

idleAn integer specifying the maximum number of seconds between requests before the user is automati-
cally signed out. A value of 0 disables the idle functionality allowing an unlimited amount of time
between user requestSlote: If the underlying session expires, the cookie is removed or the sign in
expires before the idle time specifiediihe the user will be signed out.

10 Chapter 1. Web Modules

TheAuthSession object returned by theession() function has the following methods and attributes:

classAuthSession
For managing the auth information stored in the session store. Has the following methods:

username ()
Returns the username as a string if a user is signed in, otherwise returns an empty string

signin (usernamg
Sign in the user with usernanusername

signOut ()
Sign out the signed in user.

userinfo ()
If a user is signed in, returns a dictionary with the following keyssername’ , 'started’ ,
'accessed’ ,’expire’ ,’idle’ . If no useris signed in returridone.

AuthManager Objects

The web.auth.manager() function has the following parameters and is used to cres#tataManager
onject:

manager (driver, app) driver
TheDriver object.
appThe name of the current application

The AuthManager object returned by thmanager() function and has the following methods and attributes:

classAuthManager
Auth Manager for creating modifying and removing users and applications.

applicationExists (app
ReturnTrue if there is an application namexpp, False otherwise.

addApplication (app
Adds an application namexpp.

removeApplication (app
Removes the application namepp.

apps ()
Return a list of application names.
userExists (usernamg
ReturnTrue if there is a user with the usernamsernameFalse otherwise.

addUser (username, passondirstname:”][,surname:”][emailz”])
Adds a user with the usernarmsernameand passworgasswordo the system. You can optionally
also specify the firstname, surname and email address of the user.

removeUser (usernamg
Removes the user with the usernansername

getFirsthname (usernamg
Returns the firstname of the usesername

setFirstname (username, valye
Sets the firstname of the usesernameo value

getSurname (usernamg
Returns the surname of the ussername

setSurname (username, valje
Sets the surname of the usesernameo value

getPassword (usernamg
Returns the password of the ussername

setPassword (username, valge
Sets the password of the usexernameo value

1.2. web.auth — Easy to use authorisation and user management system 11

getEmail (usernamg
Returns the email address of the ugsername

setEmail (username, valye
Sets the email address of the ussernameo value

users ()
Return a list of usernames.

getAccessLevel (username, app
Returns the access level of the ussernamdor the application namedpp.

setAccessLevel (username, app, level
Sets the access level of the ussernamdor the application nameappto level

getAccesslLevels (usernamg
Returns a dictionary of application name, access level pairs for the user with the usessanmame

1.3 datetime — Compatibility code providing date and time classes
for Python 2.2 users

The following classes provide a subset of the functionality of the Pythod&s3 , time anddatetime Ob-

jects. If you want to do sophisticated date and time classes is it is reccommended that you use Python 2.3. These
classes are designed only so that Python 2.2 users can still use date and time functionaltemda¢abase

module.

Note: It should be noted that although thime anddatetime classes have the ability to support microseconds,
theweb.database module only deals in whole seconds since some of the underlying databases do not support
microseconds.

classdate (year, month, day
A date object represents a date (year, month and day) in an idealized calendar, the current Gregorian
calendar indefinitely extended in both directions. January 1 of year 1 is called day number 1, January 2
of year 1 is called day number 2, and so on. This matches the definition of the "proleptic Gregorian”
calendar in Dershowitz and Reingold’s boGklendrical Calculationswhere it's the base calendar for all
computations. See the book for algorithms for converting between proleptic Gregorian ordinals and many
other calendar systems.

All arguments are required. Arguments may be ints or longs, in the following ranges:

eMINYEAR <=year <= MAXYEAR
el <= month <= 12
el <= day <= number of days in the given month and year

If an argument outside those ranges is giwéalueError s raised.
Instance Attributes:

year
BetweenMINYEARandMAXY EARclusive.

month
Between 1 and 12 inclusive.

day
Between 1 and the number of days in the given month of the given year.

classtime ([hour:O] [,minute:O] [,second:(] [,microsecond:(})
A time object represents a (local) time of day, independent of any particular day.

All arguments are required. Arguments may be ints or longs, in the following ranges:

o0 <= hour < 24
o0 <= minute < 60

12 Chapter 1. Web Modules

o0 <= second< 60
o0 <= microsecond< 1000000

If an argument outside those ranges is givéalueError is raised.
Instance Attributes:

hour
In range(24)

minute
In range(60)

second
In range(60)

microsecond
In range(1000000)

classdatetime (year, month, da&, hour:O] [,minute:O] [,second:(] [,microsecond:d)
A datetime objectis a single object containing all the information frode#e object and dime object.
Like adate object,datetime assumes the current Gregorian calendar extended in both directions; like
atime object,datetime assumes there are exactly 3600*24 seconds in every day.

All arguments are required. Arguments may be ints or longs, in the following ranges:

eMINYEAR <=year <= MAXYEAR

el <= month <= 12

el <= day <= number of days in the given month and year
0 <= hour < 24

0 <= minute < 60

e0 <= second< 60

0 <= microsecond< 1000000

If an argument outside those ranges is givéalueError is raised.
Instance Attributes:

year
BetweenMINYEARandMAXYEARclusive.

month
Between 1 and 12 inclusive.

day
Between 1 and the number of days in the given month of the given year.

hour
In range(24)

minute
In range(60)

second
In range(60)

microsecond
In range(1000000)

All classes have the following class methods:

now()
Returns adatetime.datetime object representing the current date and time

1.3. datetime — Compatibility code providing date and time classes for Python 2.2 users 13

stritime (formaf)
Format the date using standard time module string format strings:

%a Locale’s abbreviated weekday name.

%A Locale’s full weekday name.

%b Locale’s abbreviated month name.

%B Locale’s full month name.

%c Locale’'s appropriate date and time representation.

%d Day of the month as a decimal number [01,31].

%H Hour (24-hour clock) as a decimal number [00,23].

%I Hour (12-hour clock) as a decimal number [01,12].

%j Day of the year as a decimal number [001,366].

%m Month as a decimal number [01,12].

%M Minute as a decimal number [00,59].

%p Locale’s equivalent of either AM or PM.

%S Second as a decimal number [00,61]. (1)

%U Week number of the year (Sunday as the first day of the week)
as a decimal number [00,53]. All days in a new year preceding
the first Sunday are considered to be in week 0.

%w Weekday as a decimal number [0(Sunday),6].

%W Week number of the year (Monday as the first day of the week)
as a decimal number [00,53]. All days in a new year preceding
the first Monday are considered to be in week O.

%x Locale’s appropriate date representation.

%X Locale’s appropriate time representation.

%y Year without century as a decimal number [00,99].

%Y Year with century as a decimal number.

%Z Time zone name (no characters if no time zone exists).

%% A literal "%" character.

For example:

>>> datetime.datetime(2004,5,3,10,30,50).strftime('%x-%X’)
'05/03/04-10:30:50’

timetuple ()
Returns a basic time tuple for the dat®arning: The last 6 entries in the tuple returned from this function
are obtained fronime.localtime() and do not represent anything.

isoformat ()
Return the date as a standard SQL string of the forkvarning: microseconds are ignored.

>>> import web, datetime

>>> datetime.date(2004,5,3).isoformat()

'2004-05-03’

>>> datetime.time(10,30,50,9).isoformat() # Microseconds are ignored
'10:30:50°

>>> datetime.datetime(2004,5,3,10,30,50).isoformat()

'2004-05-03 10:30:50°

1.3.1 Module-Level Functionality

Thedatetime module exports the following constants:

MINYEAR The smallest year number allowed in a date or datetime object. MINYEAR is 1.

MAXYEARThe largest year number allowed in a date or datetime object. MAXYEAR is 9999.

For Example:

14 Chapter 1. Web Modules

>>> import web # Necessary to set up the paths so datetime can be imported
>>> import datetime

>>> datetime.MINYEAR

1

>>> datetime.MAXYEAR

9999

1.3.2 Compatibility with Python 2.3 and above

Thedatetime module is as combitible as possible with Python 2.3. It does not implement all the features of the
Python 2.3datetime module but it implements all the ones the modules themselves need. Most of the time this
is all that is required. One important omission is that you cannot add or subtract date objects in this combatibility
module. Instead convert them to times and then convert them back again.

In order to write code compatible with both Python 2.2 and 2.3 there is one particular point tolatetéme

is not a type in Python 2.2, it is a class. This meansdagttime.datetime.now() will not work because
you can't call thenow() of an uninitialised class. Instead usatetime.datetime(2004,1,1).now()

This will produce the same (correct) result in both versions regardless of the values chosen for the date

1.4 web.database — SQL database layer

The web.database module is a simple SQL abstraction layer which sits on top of a DB-API 2.0 cursor to
implement data type conversions, provide database independance and offer a more Python-like interface to the
data returned from queries. This is achieved by implementing common field types, a portable SQL dialect and a
standard API for all supported databases.

Here are the main features of the module:

e 100% compatible with the underlying DB-API 2.0 cursor.wkb.database cursor provides access to
the underlying DB-API 2.0 cursor.

e Provides methods includingelect() ,insert() , update() , delete() , create() , alter()
anddrop() which build and customise the SQL depending on the database being used providing database
independance.

¢ Provides strong typing for the data being used. No need to deal with SQL strings, the module automatically
encodes and decodes data for the approriate column.

See Also:

Python DB-SIG Pages

(http://www.python.org/topics/database/)
To find out more about the DB-API 2.0 or how to program using DB-API 2.0 methods, please visit
http://www.python.org/topics/database/. The rest of this documentation will assume you are not interested
in using the cursor as a DB-API 2.0 cursor and that you want to know the additional features available.

1.4.1 Background

Most database engines currently have many common features but their differences are such that Python code
written for one database engine using the DB-API 2.0 is unlikely to work with another database engine without
some degree of modification. To complicate matters further many DB-API 2.0 drivers are not actually fully DB-
API 2.0 compliant.

Variation between database engines occurs in SQL syntax, choice of field types and choice of which Python object
to use to represent field values.

1.4. web.database — SQL database layer 15

The DB-API 2.0 specification was designed with these differences in mind so that module implementers could
make full use of the features of their particular database engine. This module provides a simple, standardised and
portable APl and SQL dialect which also exposes the interface components of the underlying DB-API 2.0 cursor.
In this way users can access a database in a simplified and portable fashion for simple operations whilst exposing
the DB-API 2.0 interface for more complex operations.

The drawback of this approach is that some of the fields available in a particular database will not be available
through this module. Also there is no support for complex SQL commands including indexes or views since not
all databases support them. The approach is only to support what is available to all databases being used.

If a database-specific feature is needed for a specific call you can always use the underlying cursor object directly.
By using theweb.database module as much as possible you will still make your code more portable across
databases should you ever need to change servers and by usiveptidatabase module exclusively you can

gain true database portability.

One of the major advantages of usiwgb.database is that it comes with a pure Python SQL engine named
SnakeSQL which fully implements the specification (albeit slowly) so if youwsrsie.database in your own

code you can guarantee your users will be able to run your application even if they do not have access to a better
known database engine.

Comments and questions about this specification may be directed to James Gardner at docs at pythonweb.org.

1.4.2 Introduction

Understanding Field Types

The information you send to the database and the information retrieved from the database will be automatically
converted to the correct formats so that you can treat the values as normal Python objects.

Traditional SQL databases usually have support for a number of different fields. Date fields behave differently to
integer fields for example. All of the fields are set using an SQL representation of the data in the form of a string
and all of the queries from the database return strings.

The web.database module provides ten field types and rather than passing information to and from the
database as specially SQL encoded strings, you can also pass it as a python data structure. For example to
set aninteger field you could give the cursor an integer. To sdbate field you would give the cursor a
datetime.date object. Theweb.database cursor would do all the conversion for you.

Furthermore when you retrieve information from the databaseursor will convert the strings recieved back
into Python objects so that you never need to worry about the encodings.

This doesn’t sound like too much of a big deal but because different databases handle different datatypes in
slightly different ways your SQL could have different results on different databases. Programming with a
web.database cursor removes these inconsistencies.

Here are the supported datatypes:

Type Description

Bool True or False

Integer Any Python integer (not Python Long or Decimal)

Long Any Python long integer between -9223372036854775808 and 9223372036854775807

Float Any Python floating point number

String A string of 255 characters or less (Not unicode?) [a]

Text A 24-hit string [b]

Binary A 24-bit binary string [b]]

Date Any valid Pythondatetime.date object. Takes values in the form of pythdatetime objects. Only store!
Time Any valid Pythondatetime.time object. Takes values in the form of pythdatetime objects. Only store:
Datetime Any valid Pythondatetime.datetime object. Takes values in the form of pythdatetime objects. Only

[a] Some databases make a distinction between short strings (often named VARCHAR) and long strings (often
TEXT). Short string fields are normally faster and so a distinction is also made in this specification.

16 Chapter 1. Web Modules

[b] Although Python supports strings of greater than 24 bit, a lot of databases do not and so in order to be
compatible with those databases Binary and String objects should be no longer than 24 bit.

[c] Although Python j 2.3 does not support datetime objects, pure Python compatible libraries exist for Python j
2.3 and these can be used instead so it makes sense to use the standard Python types where possible.

The values you pass to tleairsor.execute() method should be of the correct type for the field they are
representing. The values returned by thesor.fetchall() method will automatically be returned as the
appropriate Python type.

For exampleBool fields should have the Python valuBisie or False , Long fields should be a valid Python
long etc.

There are some exceptions:

String fields should contain Python strings of 255 characters of [Bsst fields should contain 24 bit strings
less. For strings longer than this length you should consider saving the string in a file and saving the filename in
the database instead.

Date, Datetime and Time fields take Pythondatetime.date , datetime.datetime and
datetime.time objects respectively.

Unfortunately Python 2.2 and below do not supportdiagetime module. Howeveweb.database uses a
compatibility module that behaves closely enough for most purposes. Simply impbratabase and then
you can import the datetime module automatically. This is what it looks like at the Python prompt:

Python 2.2.3 (#42, May 30 2003, 18:12:08) [MSC 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.

>>> import \module{web.database}

>>> jmport datetime

>>> print datetime.date(2004,11,24)

2004-11-24

>>>

1.4.3 Connecting to a Database

Connecting to a database is really very easy. The code below will connect to a MySQL database named 'test’.

import web, web.database
connection = web.database.connect(adapter="mysql", database="test")

Below is a description of the full range of parametersdbenect() function can take (Obviously not all of the
database support all of the parameters):

connect (driver,[database] [user,][password][host,][port,] [socket] [**params])
Constructor for creating a connection to a database. Retu@asiaection object. Not all databases will
use all the parameters, but databases should use the parameters specified and not abbreviated versions. Any
more complex parameters are passed directly to the underlying dideensect() method.

driverThe type of database to connect to. Can currentivlySQL’ ,'PySQLite’ or’'web.database
" butitis hoped that most database drivers will eventually be supported.

databas@he database name to connect to.

uselThe username to connect with.

password he password to use.

hosfThe host to connect to if the database is running on a remote server.

portThe port to connect to if the database is running on a remote server.

sockeThe socket to connect to if the database is running locally and requires a socket.

1.4. web.database — SQL database layer 17

**paramsAny other parameters to be passed to the driver

Here are some examples:

Connect to the unpassworded MySQL datablly®atabase on a local server connected through a socket
‘tmp/mysgld.sock’. Another common socket file used ismp/mysgl.sock’.

connection = web.database.connect(
adapter="mysql",
database="MyDatabase",
socket="/tmp/mysqld.sock",

Connect to a the databaslyDatabase asusername with passworgassword . The MySQL server is runing
remotely atmysql.example.com on port3336:

connection = web.database.connect(
adapter="mysql",
database="MyDatabase",
host="mysql.example.com",
port="3336",
user="username",
password="password",

Connect to theveb.database database in the directorg!/TestDirectory’

connection = web.database.connect(
adapter="\module{web.database} ",
database="C:/TestDirectory",

Note: Windows users may find it easier to use forward slahes in paths to avoid having to quote backslashes. Both
work equally well.

1.4.4 Cursor Options

Once you have connected to the database you will néaarsor object with which to manipulate the database.
Cursor stands for a "CURrent Set Of Results”.

Once we have the connection to the databasenection , we can easily create a cursor by calling the
connection ’scursor() method.

import web, web.database
connection = web.database.connect(adapter="mysql", database="test")
cursor = connection.cursor()

The next sections show you the different ways to usecthisor

1.4.5 Executing SQL

Theexecute() method is used to retrieve information from a database and looks like this:

18 Chapter 1. Web Modules

cursor.execute("SELECT * FROM Test")

or

cursor.execute("INSERT INTO Test (dateColumn, numberColumn) VALUES ('2004-11-8’, 4)")

web.database uses? style parameter substitution. This means ¢ixecute() = method can take a list of
values to substitute for any unquotedgymbols in the SQL string.

values = [datetime.date(2004,11,8), 4]
cursor.execute("INSERT INTO Test (dateColumn, numberColumn) VALUES (?, ?)", values)

or

cursor.execute(
sql="UPDATE Test SET dateColumn=?, numberColumn=? WHERE stringColumn=?",
parameters=[datetime.date(2004,11,8), 4, "where string"]

At first sight the parameter substitution doesn't seem to offer much of an advantage but in fact it is extremely
useful becauseeb.database will automatically convert the values to SQL for you so that you don't need to
convert them yourself.

Note: Parameter substitution can be done for any value which needs conversion. This includes default values in
CREATEstatements and values iINSERT andUPDATEstatements oWHERI[Elauses. Parameter substitutions
arenot available for strings which do not need conversions such as table names, column names etc.

The module also supporexecutemany() . This method does the sameesecute() except it executes
once for each sequence in the values parameter. For example:

cursor.executemany(
sql="UPDATE Test SET dateColumn=?, numberColumn=? WHERE stringColumn="2?",
parameters=[
[datetime.date(2004,11,8), 4, "stringl"],
[datetime.date(2004,11,8), 5, "string2"],
[datetime.date(2004,11,8), 6, "string3"],

Inweb.database this is no more efficient than executing a number of norcoasor.execute() methods.

web.database also provides cursor abstraction methods which provide a functional interface to execute SQL.
For example here we insert some values into a table.

cursor.insert(

table = 'testTable’,
columns = [coll’,’col27],
values = [vall’, 2],

Cursor abstraction methods exist for all the SQL commands supportedthgatabase . These are described
later.

Thecursor() method takes the following options and will return the appropriate cursor object:

1.4. web.database — SQL database layer 19

cursor ([execute=Tru§, [format=’tuple’], [convert=Truﬂ, [mode=’portab|e’])
The default values which the cursor abstraction methods will take for the valueseofite format and
convertcan be set using this method.

formatThis can betuple’ to return the results as a tuplegext’ to return as text wrapped to 80
characters for display in a terminadlict’ to return the results as dictionaries’object’ to
return the results as result objects to be treated as dictionaries, tuples or via attribute access.

convertConvert the results to standard formats (shouldhe for most users)

executéJsed in the cursor SQL methods. Tfue then rather than returning an SQL string, the methods
execute the results

modéeThe default mode for thexecute() method. Can béportable’ to use the SQL abstraction
methods ofdirect’ to send the SQL directly to the underlying cursor.

1.4.6 Retrieving Results

Once you have executed a SELECT statement you will want to retrieve the results. This is done using the
cursor.fetchall() method:

cursor.execute("SELECT * FROM Test")
results = cursor.fetchall()

Theresults variable will always contain a tuple of tuples of fields. If the query matched no rows, result will be

(O,) . Ifit matched one row it will be in the forn(coll, col2, col3, etc),) . If it matched more
than one it will be in the form{(coll, col2, col3, etc), (coll, col2, col3, etc), etc
)

You can print the results like this:

for row in cursor.fetchall():
print "New Row"
for field in row:
print field

The cursor.fetchall() method will return the same results until another SQL query is executed using
cursor.execute()

1.4.7 Transactions, Rollbacks and Committing Changes

Most databases supported imeb.database support basic transactions. This means that you can make a
number of changes to the database but if your program crashes your changes will not be saved so that the database
is not left in an unstable state where you have updated some tables but not others.

Changes are only saved (or committed) to the database when you catirthection object’scommit()
method:

connection.commit()

If you have made a mistake and want to lose all the changes you have made, you can rollback the database to its
previous state using thennection object’srollback() method:

connection.rollback()

20 Chapter 1. Web Modules

Finally, if you have finished using a connection you can close it usingctimmection object’s close()
method. This will also rollback the database to the time you last committed your changes so if you want to save
your changes you should catbmmit() first.

connection.commit()
connection.close()

Note: Please note that making these changes tetimmection object will automatically affect alcursor
objects of that connection as well since they all share the same connection object.

Warning: The MySQL adapter doa®ot support transactions. Results are automatically committed. If anyone
can suggest an effective way around this please let me know!

1.4.8 Special Characters

This section describes how to deal with special characters in Pythonetmdatabase

In Python

Within a Python string, certain sequences have special meaning. Each of these sequences begins with a backslash
\, known as the escape character. The values (and different escape methods) allowed in string literals are described
in the Python documentation laitp://www.python.org/doc/current/ref/strings.html. This is a brief summary.

Python recognizes the following escape sequences:

\\ Backslash (\)

\" Single quote ()

\" Double quote (")

\a ASCIl Bell (BEL)

\b ASCIl Backspace (BS)

\f ASCIlI Formfeed (FF)

\n ASCIl Linefeed (LF)

\N{name} Character named name in the Unicode database (Unicode only)
\r ASCIl Carriage Return (CR)

\t ASCIl Horizontal Tab (TAB)

\uxxxx Character with 16-bit hex value xxxx (Unicode only)
\Uxxxxxxxx Character with 32-bit hex value xxxxxxxx (Unicode only)
\v. ASCII Vertical Tab (VT)

\ooo Character with octal value ooo

\xhh Character with hex value hh

These sequences are case sensitive. For exathpls,interpreted as a backspace, Witis not.

You can use these characters in SQL exactly the same way as you would in Python. For éxadhmé one
line\nstart of new line’ is a valid SQL string containing a line break in the middle and could be used
like this:

cursor.execute("INSERT INTO table (columnOne) VALUES (‘end of one line\nstart of new line’)")

There is one important point to note about how Python (and hemetedatabase) deals with these escape
characters. If a string contains a backslasbut the character after the backslash is not a character which can

be escaped then the single backslash is treated as a single backslash. If the character can be used in an escape
sequence then the backslash is treated as an escape character and the character is escaped.

Note: All examples in this section are from the Python prompt nottieé.database one.

For example:

1.4. web.database — SQL database layer 21

Python 2.4 (#60, Nov 30 2004, 11:49:19) [MSC v.1310 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.

>>> print 'hello\%world’

hello\%world

>>> print 'hello\nworld’

hello

world

>>>

If a string contains both escaped and non-escaped characters Python guesses which are backslashes and which are
escape characters:

>>> print ’hello\nworld\%again’
hello

world\%again

>>>

If a string contains a double backslash it is always treated as an escaped backslash character and priited as

>>> print "\%’
\%
>>> print "\%’
\%

This means that the following expression is True:

>>> print '\%' == "\%’
True
>>>

But the following is not:

>>> print '\W%' == "\%’
False
>>>

When writing Python strings you have to be very careful how the backslash character is being used and then you
will have no problems.

In SQL

In SQL all strings must be properly quoted using single quotes. To insert a strindplikes into the database,
we use the SQLJames’ but what if we want to insert the strirtgil's ~ ? Because it has’acharacter in it we
can’t simply do'tail's’ as the SQL parser won't know whi¢hends the string. Instead we usl"s’

Double single quotes’() in SQL mean & character.

The single quote charactéris the only character which needs special treatment in SQL all the otherslike
behave exactly as they do in Python as described above.

For example:

cursor.execute("INSERT INTO table (columnOne) VALUES (‘James”s’)")

22 Chapter 1. Web Modules

The Easy Way

If you are using the advanced cursor methods tikesor.insert() or cursor.update() (described
later) or parameter substitution (described earlier), the easiest way to deal with special characters is to do nothing
with them at all. The methods will automatically handle the conversions for you.

For example:
cursor.insert(
table="table’,

columns=['columnOne’],
values=["James’s"],

or

cursor.execute("INSERT INTO table (columnOne) VALUES (?)", "James’s")

If you want explicitly want to use the cursor methods likersor.insert() or cursor.update() but
with quoted SQL strings rather than having the conversions done automatically you can do so like this:

cursor.insert(
table="table’,
columns=['columnOne’],
sqlValues=["James”s"],

1.4.9 SQL Reference

The SQL parser to parseirsor.execute(sql, mode="portable’) statements has already been writ-

ten and is available as a standalone module nag@dParserTools . The approach of parsing an SQL state-

ment just to rebuild it again in an abstraction layer function might sound unnecessary but the advantage is that the
SQL written in this manner is guaranteed to function in the same way acragslatiatabase databases.

This specification implements what is considered the lowest possible useful SQL feature set which is commonly
used and which all databases will support. A balance has had to be made between including useful features and
excluding features which only some database engines support. Also no duplication of features has been included.
For exampldBETWEENMNan be implemented usingand< operators in th8VHERElause so has not been included

but theLIKE operator has.

The specification includes:

SQL SELECT
SQL WHERE
SQL INSERT
SQL UPDATE
SQL DELETE
SQL ORDER BY
SQL AND & OR

Simple Joins

1.4. web.database — SQL database layer 23

SQL CREATE
SQL DROP
NULL values

Database Tables A database most often contains one or more tables. Each table is identified by a name (e.qg.
Customers or Orders). Tables contain records (rows) with data.

Below is an example of a table call@&rson :

+ + + + +

| LastName | FirstName | Number | DateOfBirth |

+ + + + +

| Smith | John | 10 | 1980-01-01 |
| Doe | John | 3 | 1981-12-25 |
+ + + + +

The table above contains two records (one for each person) and four columns (LastName, FirstName, Address,
and DateOfBirth).

Queries With SQL, we can query a database and have a result set returned.

A query looks like this:

SELECT LastName FROM Person

Gives aresult set like this:

| Smith |

Note: Some database systems require a semicolon at the end of the SQL stateeeddtabase does not.

The SELECT Statement

The SELECT statement is used to select data from a table. The tabular result is stored in a result table (called the
result-set).

SELECT column_name(s) FROM table_name

Select Some Columns To select the columns namédstName andFirstName , use a SELECT statement
like this:

SELECT LastName, FirstName FROM Person

Table Person:

24 Chapter 1. Web Modules

+ + + + +
| LastName | FirstName | Number | DateOfBirth |

+ + + + +

| Smith | John | 10 | 1980-01-01 |

+ + + + +
| Doe | John | 3 | 1981-12-25 |
+ + + + +
Result Set:
R — [— +
| LastName | FirstName |
[B +
| Smith | John |
| Doe | John |
R — [—— +

The order of the columns in the result is the same as the order of the columns in the query.

Select All Columns To select all columns from therson table, use & symbol instead of column names,
like this:

SELECT * FROM Person

Result Set:

+ + + + +
T T T T T

| LastName | FirstName | Number | DateOfBirth |

+ + + + +

| Smith | John | 10 | 1980-01-01 |
+ + + + +

| Doe | John | 3 | 1981-12-25 |

The WHERE Clause

The WHERE clause is used to specify a selection criterion.

The syntax of the where clause is:

SELECT column FROM table WHERE column operator value

With the WHERE clause, the following operators can be used:

1.4. web.database — SQL database layer 25

Operator Description

= Equal

<> Not equal

> Greater than

< Less than

>= Greater than or equal

<= Less than or equal

LIKE Pattern match (described later)
IS Used for comparison to NULL
IS NOT Used for comparison to NULL

In some versions of SQL the> operator may be written ds but not inweb.database . Note that the equals
operator in SQL iss not== as itis in Python.

The = and <> operators cannot be used to comphlldLL values because a field cannot be equal to nothing.
Instead théS andIS NOT operators should be used.

Using the WHERE Clause To select only the people whose last name&mdth , we add a WHERE clause
to the SELECT statement:

SELECT * FROM Person WHERE LastName='Smith’

Person table:

+ + + + +
| LastName | FirstName | Number | DateOfBirth |
+ + + + +
| 'Smith’ | 'John’ | 10 | 1980-01-01 |
| 'Doe’ | *John’ | 3 | 1981-12-25 |
+ + + + +

Result set:
+ + + + +
| LastName | FirstName | Number | DateOfBirth |
+ + + + +
| 'Smith’ | 'John’ | 10 | 1980-01-01 |
+ + + + +

Using Quotes Note that we have used single quotes around the conditional values in the examples.

SQL uses single quotes around text values (some database systems will also accept double quotes, not
web.database). Numeric values should not be enclosed in quotes.

For text values:

This is correct:

SELECT * FROM Person WHERE LastName='Smith’

This is wrong:

SELECT * FROM Person WHERE LastName=Smith

26 Chapter 1. Web Modules

For numeric values:

This is correct:

SELECT * FROM Person WHERE Number>10

This is wrong:

SELECT * FROM Person WHERE Number>'10’

The LIKE Condition TheLIKE condition is used to specify a search for a pattern in a column.

SELECT column FROM table WHERE column LIKE pattern

A %sign can be used to define wildcards (missing letters in the pattern).

The following SQL statement will return people with first names that start with an 'O’

SELECT * FROM Person WHERE FirstName LIKE 'O%’

The following SQL statement will return people with first names that end with an ’'a’:

SELECT column FROM table WHERE FirstName LIKE '%a’

The following SQL statement will return people with first names that contain the pattern 'la’:

SELECT column FROM table WHERE FirstName LIKE '%la%’

You can use as mar¥characters as you need in the pattern to match zero or more characters. If you need to have
an actuaPocharacters in the pattern you will need to escape it like this
%

The following SQL statement will return values that end wittbeharacter.

SELECT column FROM table WHERE Percentage LIKE '%\%’

web.database does not support tiRETWEEMondition since the same thing can be achieved using compari-
son operators.

The INSERT INTO Statement

The INSERT INTO statement is used to insert new rows into a table.

Syntax

INSERT INTO table_name (columnl, column2,..) VALUES (valuel, value2,....)

1.4. web.database — SQL database layer 27

Insert a New Row This Person table:

+ + + +

LastName | FirstName | Number | DateOfBirth |

t + + + +
'Smith’ | 'John’ | 10 | 1980-01-01 |
'Doe’ | 'John’ | 3 | 1981-12-25 |
+ + + +

+—— +— +

And this SQL statement:

INSERT INTO Person (LastName, FirstName, Number, DateOfBirth)
VALUES (’Blair’, 'Tony’, 8, '1953-05-06")

Note: web.database expects the SQL to all be on one line. The line break here is for formatting

Will give this result:

+ + + +
T T T T

LastName | FirstName | Number | DateOfBirth |

I

+ + + + +

'Smith’	'John’	10	1980-01-01
'Doe’	'John’	3	1981-12-25
'Blair	'Tony	8	1953-05-06

If you are extremely careful, the column names can be omitted as long as the values are specified in the same order
as the columns when the table was created.
The SQL below would achieve the same result as the previous SQL statement:

INSERT INTO Person VALUES (Blair', 'Tony’, 8, '1953-05-06")

Warning: It is very easy to make a mistake with the shortened syntax so it is recommended you use the full
version and specify the column names.

The UPDATE Statement

The UPDATE statement is used to modify the data in a table.
Syntax:

UPDATE table_name SET column_name = new_value WHERE column_name = some_value

Update one Column in a Row Person table

28 Chapter 1. Web Modules

+ + + + +

| LastName | FirstName | Number | DateOfBirth |
+ + + + +

'Smith’	'John’	10	1980-01-01
'Doe’	*John’	3	1981-12-25
'Blair	'Tony’	8	1953-05-06
+ + + + +

We want to add a change Tony Blair’s first name#mes:

UPDATE Person SET FirstName = 'James’ WHERE LastName = ’'Blair’

Person table

+ + + + +

| LastName | FirstName | Number | DateOfBirth |
+ + + + +

'Smith’	'John’	10	1980-01-01
'Doe’	'John’	3	1981-12-25
'Blair	'James’	8	1953-05-06
+ + + + +

Update several Columns in a Row We want to change the number of everyone with a FirstNaals and
make their DateOfBirth all980-01-01

UPDATE Person SET Number = 1, DateOfBirth = '1980-01-01' WHERE FirstName = ’'John’

Result:

+ + + + +
t t t t 1

| LastName | FirstName | Number | DateOfBirth |

+ + + + +

’Smith’	'John’	1	1980-01-01
'Doe’	'‘John’	1	1980-01-01
'Blair'	'James’	8	1953-05-06

The DELETE Statement

The DELETE statement is used to delete rows in a table.

Syntax

DELETE FROM table_name
WHERE column_name = some_value

Delete a Row Person:

1.4. web.database — SQL database layer 29

+ + + + +

| LastName | FirstName | Number | DateOfBirth |
+ + + + +

'Smith’	'John’	1	1980-01-01
'Doe’	*John’	1	1980-01-01
'Blair	'James’	8	1953-05-06
+ + + + +

John Doe is going to be deleted:

DELETE FROM Person WHERE LastName = 'Doe’

Result
+ + + + +
| LastName | FirstName | Number | DateOfBirth |
+ + + + +
| 'Smith’ | 'John’ | 1 | 1980-01-01 |
| 'Blair | 'James’ | 8 | 1953-05-06 |
+ + + + +

Delete All Rows It is possible to delete all rows in a table without deleting the table. This means that the table
structure and attributes will be intact:

DELETE FROM table_name

Result

+
+

t + + +
| LastName | FirstName | Number | DateOfBirth |
+ + + + +
+ + + + +

ORDER BY

The ORDER BY keyword is used to sort the result.

Sort the Rows The ORDER BY clause is used to sort the rows.

Orders:

+ + +

| Company | OrderNumber |
+ + +

| 'Asda’ | 5678 |
| 'Morrisons’ | 1234 |

| "Tesco’ | 2345 |

| 'Morrisons’ | 7654 |

+ + +

30 Chapter 1. Web Modules

To display the companies in alphabetical order:

SELECT Company, OrderNumber FROM Orders ORDER BY Company

Result:
+ + +
| Company | OrderNumber |
+ + +
'Asda’	5678
'Morrisons’	1234
'Morrisons’	7654
"Tesco’	2345 [
Example

To display the companies in alphabetical order AND the order numbers in numerical order:

SELECT Company, OrderNumber FROM Orders ORDER BY Company, OrderNumber

Result:
+ + +
Company	OrderNumber
*Asda’	5678
'Morrisons’	1234
'Morrisons’	7654
"Tesco’	2345
+ + +

Example

To display the companies in reverse alphabetical order:

SELECT Company, OrderNumber FROM Orders ORDER BY Company DESC

Result:

+ +

+

Company
+

| OrderNumber |
+

'Tesco’

| 2345 |

'Morrisons’ | 7654 |

'Asda’
+

I
+
I
| 'Morrisons’ | 1234 |
I
I
+

| 5678 |
+

Example

To display the companies in alphabetical order AND the order numbers in reverse numerical order:

1.4. web.database

— SQL database layer

31

SELECT Company, OrderNumber FROM Orders ORDER BY Company ASC, OrderNumber DESC

Result:
| Company | OrderNumber |
+ + +
'Asda’	5678
'Morrisons’	7654
'Morrisons’	1234
"Tesco’	2345
+ + +
AND & OR

AND and OR join two or more conditions in a WHERE clause.

The AND operator displays a row if ALL conditions listed are true. The OR operator displays a row if ANY of
the conditions listed are true.

Original Table (used in the examples)

+ + + +
t t t 1

LastName | FirstName | Number | DateOfBirth |

+ + + +

'Smith’ | "John’ | 1 | 1980-01-01 |
'Doe’ | 'John’ | 1 | 1980-01-01 |
‘Blair' | 'James’ | 8 | 1953-05-06 |

+——— +— +

+ + + +
t t t 1

Use AND to display each person with the first name equdbtm , and the last name equal mith :

SELECT * FROM Person WHERE FirstName="John’ AND LastName='Smith’

Result Set
+ + + + +
| LastName | FirstName | Number | DateOfBirth |
| 'Smith’ | 'John’ | 1 | 1980-01-01 |
+ + + + +

Use OR to display each person with the first name equadtoes, or the last name equal &mith :

SELECT * FROM Person WHERE FirstName='James’ OR LastName='Smith’

Result Set

32 Chapter 1. Web Modules

+ + + + +

| LastName | FirstName | Number | DateOfBirth |
+ + + + +

| 'Smith’ | 'John’ | 1 | 1980-01-01 |
| 'Blair | 'James’ | 8 | 1953-05-06 |
+ + + + +

Example

You can also combine AND and OR use parentheses to form complex expressions:

SELECT * FROM Person WHERE (FirstName="James’ AND LastName='Smith’) OR LastName='Blair’

Result Set

+ + + +
LastName | FirstName | Number | DateOfBirth |

+ +
t t

+

+

| 1953-05-06 |
+

'‘Blair’ | 'James’ [

+ +
T T

+— 4+ 4+
+ o

NULL Values

An important feature ofveb.database s its ability to supporNULL values. A field which contains IHULL
value is simply a field where no value has been set or the value as been set to contain no value. This is quite
different, for example, from &tring field which has been set a vallie, an empty string.

Original Table (used in the examples)

+ + + + +
| LastName | FirstName | Number | DateOfBirth |

+ + + + +
T T T T

'Smith’	'John’	1	1980-01-01
'Doe’	'John’	1	1980-01-01
'Blair	'James’	8	1953-05-06
+ + + + +

Our query

UPDATE Person SET FirstName=NULL WHERE LastName='Doe’

Our table now looks like this:

+ + + + +

| LastName | FirstName | Number | DateOfBirth |
+ + + + +

| 'Smith’ | 'John’ | 1 | 1980-01-01 |

| 'Doe’ | NULL | 1 | 1980-01-01 |
| 'Blair | 'James’ | 8 | 1953-05-06 |

This is quite different from this query which simply sets the FirstName to the siidgL’ not the valueNULL

1.4. web.database — SQL database layer 33

UPDATE Person SET FirstName="NULL’ WHERE FirstName IS NULL

Our table now looks like this:

+

+ + + +

| LastName | FirstName | Number | DateOfBirth |

+

+ + + +

'Smith’	'John’	1	1980-01-01
'Doe’	'NULL’	1	1980-01-01
'Blair	'James’	8	1953-05-06
+ + + + +

This is one of the reasons why it is important to use the correct quotations around values in you SQL.

Note: We use thdS operator rather than theoperator to compare fields MULL values.

If you inserted a row into the table without specifying all the columns the columns you had not specified would
contain the valu&lULL unless you had specifiedzEFAULTvalue when you created the table.

CREATE

To create a table in a database:

Syntax

CREATE TABLE table_name

(

column_namel data_type options,
column_name2 data_type options,

Example

This example demonstrates how you can create a table nBersdn , with four columns. The column names
will be LastName , FirstName , Number, andDateOfBirth

CREATE TABLE Person (LastName String, FirstName String, Number String, DateOfBirth Date)

The datatype specifies what type of data the column can hold. The table below contains the data types supported
by web.database

Type Description

Bool True or False

Integer Any Python integer (not Python Long or Decimal)

Long Any Python long integer between -9223372036854775808 and 9223372036854775807

Float Any Python floating point number

String A string of 255 characters or less (Not unicode?) [a]

Text A 24-bit string [b]

Binary A 24-bit binary string [b]]

Date Any valid Pythondatetime.date object. Takes values in the form of pythdatetime objects. Only store:

Time Any valid Pythondatetime.time object. Takes values in the form of pythdatetime objects. Only store!

Datetime Any valid Pythondatetime.datetime object. Takes values in the form of pythdatetime objects. Only
34 Chapter 1. Web Modules

[a] Some databases make a distinction between short strings (often named VARCHAR) and long strings (often
TEXT). Short string fields are normally faster and so a distinction is also made in this specification.

[b] Although Python supports strings of greater than 24 bit, a lot of databases do not and so in order to be
compatible with those databases Binary and String objects should be no longer than 24 bit.

[c] Although Python j 2.3 does not support datetime objects, pure Python compatible libraries exist for Python j
2.3 and these can be used instead so it makes sense to use the standard Python types where possible. The options
can be used to further specify what values the field can take. They are described in the next sections.

REQUIRED In web.database , REQUIREDsimply means that the field cannot contailNeLL value. If
you insert a row into a table withREQUIREXield, you must specify a value for the field unless you have also
specified the field to have BREFAULTvalue which is noNULL in which case the default value will be used. If
you try to set the field ttlULL an error will be raised.

To create a table withastName andFirstName columns wherdastName could not take &NULLvalue you
would use:

CREATE TABLE Person (LastName String REQUIRED, FirstName String)

UNIQUE In web.database , a UNIQUEfield is one in which all values in the table must be different. An
error occurs if you try to add a new row with a value that matches an existing row. The exception to this is that if
a column is not specified BEQUIREDI.e. it is allowed to contailNULL values, it can contain multiplSULL
values.

To create a table withhastName andFirstName columns where all the values dfastName had to be
different orNULLyou would use:

CREATE TABLE Person (LastName String UNIQUE, FirstName String)

If a field is specified abINIQUE web.database will not also let you specify ®EFAUL Tvalue.

Bool, Float, Text and Binary fields cannot be unique.

PRIMARY KEY PRIMARY KEYolumns are unique and cannot takeLL values. Each table can only have
one field specified aBBRIMARY KEY

Primary keys can sometimes be usedimb.database ’s drivers to speed up database queriesPRIMARY
KEY column is a column where the value is used to uniquely identify the row.

To create a table withastName andFirstName columns wheréastName is a primary key use:

CREATE TABLE Person (LastName String PRIMARY KEY, FirstName String)

Bool, Float, Text and Binary fields cannot be primary keys.

DEFAULT TheDEFAULToption is used to specify a default value for a field to be used if a value is not specified
when a new row is added to a table.

To create a table withastName andFirstName columns where the default value forstName is’'Smith’
we would use:

CREATE TABLE Person (LastName String DEFAULT='Smith’, FirstName String)

1.4. web.database — SQL database layer 35

You cannot specify ®EFAULTIf the column is 3PRIMARY KEMr UNIQUE
If no DEFAULTIs specified th&EFAULTis NULL

Binary and Text fields cannot have default values.

FOREIGN KEY The final option isFOREIGN KEYIf a column is specifiedFOREIGN KEYt cannot have
any other options. The table specified as providing the foreign key must have a primary key. It is the primary key
value which is used as a foreign key in the other table.

For example:

CREATE TABLE Houses (House Integer, Owner String FOREIGN KEY=People)

Bool, Float, Text and Binary fields cannot be foreign key fields.

Foreign keys are described in more detail in the section on joins.

DROP Table

Delete a Table To delete a table (the table structure and attributes will also be deleted):

DROP TABLE table_name

Note: If you are using foreign key constraints you cannot drop a parent table if the child table still exists you
should drop the child table first.

If you want to drop more than one table you can use this alternative syntax:

DROP TABLE tablel, table2, table3

FOREIGN KEY and Joins

Sometimes we have to select data from two or more tables to make our result complete. We have to perform a
join. Joins and the use of primary and foreign keys are inter-related.

FOREIGN KEY Tables in a database can be related to each other with keys. A primary key is a column with a
unique value for each row. The purpose is to bind data together, across tables, without repeating all of the data in
every table.

In the People table below, the_astName column is the primary key, meaning that no two rows can have the
samelLastName . TheLastName distinguishes two persons even if they have the same name.

When you look at the example tables below, notice that:

e ThelLastName column is the primary key of theeople table
e TheHouse column is the primary key of thelouses table

e The Owner column in theHouse table is used to refer to the people in theople table. Owner is a
foreign key field.

36 Chapter 1. Web Modules

People

+ + + + +

| LastName | FirstName | Number | DateOfBirth |

+ + + + +
| Smith | John | 10 | 1980-01-01 |
+ + + + +

| Doe | James | 3 | 1981-12-25 |
Houses

[E IR +

| House | Owner |

B — B — +

| 1 | Smith |

[—— [m— +

| 2 | Smith |

ommeee o +

| 3 | Doe |

[— B — +

People may own more than one house. In our example John Smith owns bothHand@. In order to keep
the database consistent you would not want to ren®méh from thePeople table or drop théeople table
because thélouses table would still contain a reference &mith . Similarly you wouldn’t want to insert or
update a value in th®wner column of theHouses table which didn't exist as a primary key for tfieople
table.

By specifying theOwner column of theHouses table as a foregin key these constraints are enforced by
web.database

The SQL for the tables is belowNote: The line breaks in the firsSEREATEstatement are for formatting;
web.database doesn't support line breaks in SQL.

CREATE TABLE People (
LastName String PRIMARY KEY, FirstName String,
Number Integer, DateOfBirth Date

)
CREATE TABLE Houses (House Integer, Owner String FOREIGN KEY=People)

If a column is specifiedFOREIGN KEMt cannot have any other options. The table specified as providing the
foreign key must have a primary key. It is the primary key value which is used as a foreign key in the other table.

Bool, Float, Text and Binary fields cannot be foreign key fields.

We can select data from two tables by referring to two tables, using the SQL Bédter. The line breaks are just
for formatting;web.database doesn't support line breaks in SQL.

SELECT Houses.House, People.FirstName, Houses.Owner
FROM People, Houses
WHERE People.LastName=Houses.Owner

Here is the result

1.4. web.database — SQL database layer 37

+ + + +

| Houses.House | People.FirstName | Houses.Owner |
+ + + +

1	'John’	'Smith’
2	'John’	'Smith’
3	'‘James’	'Doe’
+ + + +

and another example:

SELECT Houses.House, People.FirstName, Houses.Owner
FROM People, Houses
WHERE People.LastName=Houses.Owner and People.DateOfBirth<'1981-01-01"’

Here is the result

+ + + +
| Houses.House | People.FirstName | Houses.Owner |
+ + + +
| 1 | 'John’ | 'Smith’ |
| 2 | 'John’ | 'Smith’ |
+ + + +

1.4.10 Cursor Abstraction Methods

This section describes how to use the following SQL methods ofugor object:
select() ,insert() ,update() ,delete() ,create() ,alter() ,drop() ,function()

These functions are designed to reflect the SQL syntax you would use if you were writing the SQL directly. For
example you might write:

SELECT fieldName FROM tableName
INSERT INTO tableName valuel, value2

Accordingly theselect() andinsert() methods accept thigeldsandtable parameters in a different order.
Itis reccomended however that you always specify parameters by name rather than relying on their order as future
versions may have different parameters in different places.

See Also:

w3schools SQL Tutorial

(http://www.w3schools.com/sql/default.asp)
A good introduction to SQL commands can be found on the w3schools website at
http://lwww.w3schools.com/sql/default.asp.

Selecting Data

select (tables, columns,[values:[],][where:None,][order:None,][execute:None,][fetch:None,

*%
[params|)
Build an SQL string according to the options specified and optionally execute the SQL and return the results

in the format specified. No error checking on field names if the SQL string is only being built. Strict error
checking is only performed when executing the code.

38 Chapter 1. Web Modules

tablesA string containing the name of the table to select from or if selecting from multiple tables, a sequence
of table names.

columnsA sequence of column names to select. Can be a string if only one column is being selected. If se-
lecting from multiple tables, all column names should be in the ftaivieName.columnName’

values; list of values to substitute fd? in the WHERElause specified byhere

whereThe WHERE clause asweb.database list as returned byursor.where() . If whereis a
string it is converted to the correct format.
orderThe ORDER BY clause aswaeb.database list as returned byursor.order() . If orderis a

string it is converted to the correct format.

executdf False the method returns the SQL string needed to perform the desired operationge Ithe
SQL is executed and the results converted and returned in the appropriate form. If not specified takes
the value specified in the cursor which by defaulfige

fetchwhether or not to fetch the results. Tfrue andexecutas not specifiecexecutds set toTrue . If
True andexecutdéFalse an error is raised.

**paramsThe parameters to be passed tofetehall() method iffetchis True

To select some information from a database using an SQL string you would use the following command:

SELECT column_name(s) FROM table_name

For example consider the table below:

Table Person

+ + + + +
| LastName | FirstName | Address | DateOfBirth |

+ + + + +

| Smith | John | Bedford | 1980-01-01 |
+ + + + +

| Doe | John | Oxford | 1981-12-25 |
+ + + + +

To retrieve a list of the surnames and dates of birth of all the people in the table you would use the following code:

rows = cursor.select(
columns = [LastName’, 'DateOfBirth’],
tables [Person’],
format ‘object’,

Note: If you have specifiedetchasFalse in the cursor constructor you would need to speéifichasTrue

here to fetch the results, otherwise you would need toroses = cursor.fetchall() to actually fetch
the results.
Since we have specifiddrmatas’object’ , the result from this call would be a tuple of TupleDescriptor objects

which can be treated as a tuple or a dictionary:

>>> for record in rows:
print record[0], record[1]
print record['LastName’], record['DateOfBirth’]

Smith 1980-01-01
Smith 1980-01-01
Doe 1981-12-25
Doe 1981-12-25

1.4. web.database — SQL database layer 39

Using theselect() = method, information you select from a field is automatically converted to the correct Python
type. Integer fields return Integers, Date fields retlatetime.date objects.

The where Parameter The example above selected evégstName and DateOfBirth field from the
table. To limit the information selected you need to specifythere parameter in the same way you would for
any SQL query.

>>> rows=cursor.select(columns=[LastName’],tables=['Person’],where="LastName="Smith™)
>>> for record in rows:
print record['LastName’], record['DateOfBirth’]

"'Smith’

We had to specify the valuBmith as properly encoded SQL since we specified the where clause as a string.
Alternatively we could have used tlcarsor.where() method to help instead.

where (where,[values:[]])
Return a parse@/HERElause suitable for use in tiselect() ,update() anddelete() methods of

thecursor object.

whereA string containing th&VHERElause. Can include tHdKE operator which is used as follows:

WHERE columnName LIKE %s1%s2%s

Every % sign is matched against zero or more characters.
Note: whereshould not include the stringVHERE’ at the beginning.

valued list of values to substitute fd? parameters in th&/HERElause

More complex expressions can also be built into where clauses. See the SQL Reference section for full informa-
tion.

The order Parameter You can specify the order in which the results are sorted usingrtter parameter. It
is used as follows:

>>> for record in cursor.select(LastName’, 'Person’, order=""LastName™):
print record['LastName’]

'Doe’

"Smith’

>>> for record in cursor.select('LastName’, 'Person’, order="LastName DESC"):
print record['LastName’]

;émith’
'Doe’
Note that by placing the worESCafter the column to order by, the order is reversed.

You can place a number of Columns after each other. For exaropler="LastName DESC
DateOfBirth" could be used to order the results in decending orddrdsfName and if any results have
the same last name, order thembate OfBirth

Alternatively we could have used tloersor.order() method to help instead.

order (order)
Return a parse@RDER BYlause suitable for use in tlselect() method of thecursor object.

orderA string containing th©RDER BYlause Note: order should not include the strin@RDER BY’
at the beginning.

40 Chapter 1. Web Modules

Disabling Execute If you do not want the SQL to actually be executed you can setxbeute parameter of
theselect() method toFalse . You can then manually execute it usiogrsor.execute()

>>> sql = cursor.select(columns=['LastName’, 'DateOfBirth’], tables=['Person’], execute=False)
>>> sq

'SELECT LastName, DateOfBirth FROM Person’

>>> cursor.execute(sql)

>>> cursor.fetchall()

(CSmith’,’1980-01-01"),('Doe’,'1981-12-25"))

Using Joins The select() allows you to select information from multiple tables. In order to do this you
must specify the tables you wish to select from as a list or tuple and use the fully qualified column name for each
table you want to column you want to select from.

For example:

>>> rows = cursor.select(
columns = ['tablel.LastName’, 'table2.Surname’],

tables = [tablel’,’table2],
where = "tablel.Surname = table2.Surname",
. format = ’dict’,
)
>>> print rows[0]['table2.Surname’]
'Smith’

Inserting Data

The insert method looks like this:
Theinsert() method of aveb.database cursor looks like this:

insert (table, columns, values, sqIVaIu{executd)
Insert values into the columns in table. Eithvatuesor sqlValuescan be specified but not both.

tableThe name of the table to insert into

columnsA sequence of column names in the same order as the values which are going to be inserted into
those columns. Can be a string if only one column is going to have values inserted

valuesA sequence of Python values to be inserted into the columns named @oltiransvariable. Can
be the value rather than a list if there is only one value/alfiesis specified thesqglValuesmust be
either an empty sequence or contain a list of all quoted SQL strings for the columns specified in which
casevaluescontains the Python values of the SQL strings to be substitute®d foarameters in the
sglValuessequence.

sqlValue#\ sequence of quoted SQL strings to be inserted into the columns namedcioltihensvariable.
Can be the value rather than a list if there is only one valusgINaluess specified and contaira
parameters for substitution thealuescontains the values to be substituted. Otherwesleiesmust
be an empty sequence.

executdf False the method returns the SQL string to perform the desired operatiofhsudf the SQL is
executed. If not specified takes the value specified in the cursor which by defatleis

To insert data into a table using SQL you would use the following command:

INSERT INTO table_name (columnl, column2,...)
VALUES (valuel, value2,....)

For example consider the table used to demonstratectieet() = method:

1.4. web.database — SQL database layer 41

+ + + + +
| LastName | FirstName | Address | DateOfBirth |
+ + + + +

The SQL command to insert some information into the table might look like this:

INSERT INTO Person (LastName, FirstName, Address, Age)
VALUES ('Smith’, 'John’, '5 Friendly Place’, '1980-01-01")

To insert the data usingvaeb.database cursor we would do the following:

cursor.insert(
table = 'Person’,
columns = ['LastName’, 'FirstName’, 'Address’, 'DateOfBirth’],
values = ['Smith’, 'John’, '5 Friendly Place’, datetime.date(1980,1,1)],

Note: We specify the field values as real Python objects. The date was specifieda#s aobject and was
automatically converted. Python 2.2 users can alsoimgpert datetime if they have first usedmport
web as the web modules come with a compatibility module.

The table now looks like this:

+ + + + +

| LastName | FirstName | Address | DateOfBirth |

+ + + + +
| Smith | John | 5 Friendly Place | 1980-01-01 |

Updating Data

For example consider the table we created earlier:

table Person

+ + + + +
| LastName | FirstName | Address | DateOfBirth |
| Smith | John | 5 Friendly Place | 1980-01-01 |
+ + + + +

The SQL command to change every address in the table to '6 London Road’ is:

UPDATE Person SET Address = '6 London Road’

To update the data usingreb.database cursor we would do the following:

cursor.update(table="Person’,columns='Address’],values=['6 London Road)

The table now looks like this:

42 Chapter 1. Web Modules

+ + + + +

| LastName | FirstName | Address | DateOfBirth |
+ + + + +
| Smith | John | 6 London Road | 1980-01-01 |

+ + + + +

Theupdate() method of aveb.database cursor looks like this:

update (table, columns, values, sqIVaIu[e,swhere] [executé)
Update the columns in table with the values. Eitha&liuesor sglValuescan be specified but not both.

tableA string containing the name of the table to update

columnsA sequence of column names in the same order as the values which are going to be updated in those
columns. Can be a string if only one column is going to have values inserted

valuesA sequence of Python values to be inserted into the columns named @oltiransvariable. Can
be the value rather than a list if there is only one value/alfiesis specified thesqglValuesmust be
either an empty sequence or contain a list of all quoted SQL strings for the columns specified in which
casevaluescontains the Python values of the SQL strings to be substitute®d foarameters in the
sglValuessequence. If there are more values specifiedhlnesthansqlValueshe remaining values
are used to substitute f@rparameters imvhere

sqlValue#\ sequence of quoted SQL strings to be inserted into the columns namedcioltihensvariable.
Can be the value rather than a list if there is only one valusglNaluess specified and contair
parameters for substitution thealuescontains the values to be substituted. Otherweseiesmust
be an empty sequence.

whereThe WHERE clause asw&eb.database list as returned byursor.where() . If whereis a
string it is converted to the correct format.

executdf False the method returns the SQL string to perform the desired operatiofhsudf the SQL is
executed. If not specified takes the value specified in the cursor which by defatleis

Deleting Data

For example consider the table we created earlier:

table Person

+ + + + +
T T T T T

| LastName | FirstName | Address | DateOfBirth |
+ + + + +

| Smith | John | 5 Friendly Place | 1980-01-01 |

| Owen | Jones | 4 Great Corner | 1990-01-01 |
+ + + + +

The SQL command to delete every address in the table is:

DELETE FROM Person

To delete all the data usingveeb.database cursor we would do the following:

cursor.delete(table="Person")

Note: This does not delete the table, it deletes all the data. To drop the table uhepie method.
The table now looks like this:

1.4. web.database — SQL database layer 43

+ + + + +
| LastName | FirstName | Address | DateOfBirth |
+ + + + +
+ + + + +

To delete only some of the data you need to specifwthereparameter. For example to delete all people with
the first naméOwen’ we would use the SQL:

DELETE FROM Person WHERE FirstName="Owen’

Similarly the function to use to execute this SQL command is:

cursor.delete(table="Person", where="FirstName="Owen'")

The table now looks like this:

+ + + + +
| LastName | FirstName | Address | DateOfBirth |
+ + + + +
| Smith | John | 5 Friendly Place | 1980-01-01 |

Thedelete() method of aveb.database cursor looks like this:

delete (table,[values=[|][, Where] [execute])
Delete records from the table accordingibere

tableA string containing the name of the table to select from or if selecting from multiple tables, a sequence
of table names.
values list of values to substitute fd? in the WHERElause specified bywhere

wherélThe WHERE clause asweb.database list as returned byursor.where() . If whereis a
string it is converted to the correct format.

executdf False the method returns the SQL string to perform the desired operatiofsudf the SQL is
executed. If not specified takes the value specified in the cursor which by defauleis

Creating Tables

To create a table in SQL you would use the following command:

CREATE TABLE table_name

(
column_namel data_type,
column_name2 data_type,
etc...
)
For example:

44 Chapter 1. Web Modules

CREATE TABLE Person

(
LastName varchar,
FirstName varchar,
Address varchar,
Age int
)
To create the table above using/ab.database cursor we would use theursor.column() helper method:

column (name, typ[a, requiredzo][, uniquezo][, primaryKeyzo][, foreignKey:Noné[, defaultzNond)
Return a column tuple suitable for use in the columns tuple used icréate() method.

Bool , Float , Binary andText columns cannot be used as primary keys or unique coluBingry
andText columns cannot have default values.

nameThe name of the field as a string.

typ€erhe field type. This can take one of the valu@ool’ |, 'String’ ,'Text’ ,’Binary’ ,’Long’ ,
‘Integer’ ,'Float’” ,’Date’ ,’'Time’ ,’Datetime’
requiredWhether or not the field is required. Settingltaie means the field cannot had#tJLL values.

uniqueSet toTrue if the value must be unique. Two fields in the column cannot have the same value unless
that value is NULL

primaryKeyThe field is to be used as a primary key, the field has the same behaviour as being unique and
required but no default value can be set

foreignKeyr he field is to be used as a foreign key, the value should be the name of the table for which this is
a child table.Note: There is no need to specify the column name as tables can only have one primary
key.

defaultThe default value for the field to be set to. If not specified the default is NULL

For example:

cursor.create(
table = 'Person’,
columns = [
cursor.column(name="LastName’, type='String’),
cursor.column(name="FirstName’, type='String’),
cursor.column(name="Address’, type='String’),
cursor.column(name="Age’, type='Integer’),

Thecreate() = method takes the table name as the first argument and then a sequence column dictionaries
returned from theursor.column() method as the second argument.

Here is a more complicated example:

cursor.create(
table = 'Person’,
columns = [
cursor.column(name="LastName’, type='String’, required=True, unique=True),
cursor.column(name="FirstName’, type='String’, default="Not Specified’),
cursor.column(name="Address’, type='String’),
cursor.column(name="Age’, type="Integer’),

1.4. web.database — SQL database layer 45

In this example we specified that thastName must always be entered, does not have a default value and must
be unique so that no two people in the database can have thelsmtiame . We have also specified that
FirstName is not required and is not unique. If no value is enteredFicstName the field should be set to

the stringNot Specified

In mysql This would create the following table:

mysql> describe Person;

+ + Fomeeee Fomeee E B +
| Field | Type | Null | Key | Default | Extra |

| LastName | varchar(255) | | PRI | | |
| FirstName | varchar(255) | YES | | Not Specified | |

| Address | varchar(255) | YES | | NULL | |
| DateOfBirth | date | YES | | NULL | |
+ + S — S SRR — S — +

4 rows in set (0.00 sec)

Thecreate() method of aveb.database cursor looks like this:

create (table, cqumn:{, values=|]] [executf})
Create table with fields specified by fields. fields is a tuple of field tuples which can be obtained as follows:

columns = [
cursor.column(field options...
cursor.column(field options...
cursor.column(field options...
cursor.column(field options...

~—

tableThe table name as a string.
columnsA sequence of field tuples returned dyrsor.column()
valuesA sequence of values to substitute for default values in the columns

executdf False the method returns the SQL string to perform the desired operatiofirudf the SQL is
executed. If not specified takes the value specified in the cursor which by defauleis

Dropping Tables

Warning: Dropping a table in SQL means removing the table from the database and therefore losing all the data
it contained.
To drop (or remove) a table in SQL you would use the following command:

DROP TABLE table_name

For example:

DROP TABLE Person

To drop the table above usingageb.database cursor we would use the following code:

cursor.drop('Person’)

Thedrop() method of aveb.database cursor looks like this:

46 Chapter 1. Web Modules

drop (table[, executé)
Remove a table
tableA string containing the name of the table to drop.

executdf False the method returns the SQL string to perform the desired operatiohsudf the SQL is
executed. If not specified takes the value specified in the cursor which by defauleis

Functions

Thecursor objects currently support two function methodsax() , min() andcount() as described below.

max(table, columr{,where:Nond[,values:|]])
Returns the highest value of the column.
tableThe name of the table
columnThe name of the column
whereAn optional where clause
valued/alues to substitute fd? parameters in the where clause.

min (table, columr{,where:Nond[,values:|]])
Returns the lowest value of the column.
tableThe name of the table
columnThe name of the column
whereAn optional where clause
valued/alues to substitute fd? parameters in the where clause.

count (table, columr{,where:Noné[,values:[]])
Count the number of rows in the table matchimigere If whereis not specified, count all rows.
tableThe name of the table
columnThe name of the column
whereAn optional where clause
valued/alues to substitute fd? parameters in the where clause.

For example consider the table below:

Numbers
[+
| Number |
T +
[1 I
S — +
| 2 I
[+
| 3 I
T +

>>> cursor.max(table="Numbers’, column="Number’)

3

>>> cursor.min(table="Numbers’, column="Number’)

1

>>> cursor.max(table="Numbers’, column="Number’, where="Number<?", values=[3])
2

1.4. web.database — SQL database layer 47

1.4.11 Supported Databases

The currently supported databases include:

SQLite Stores database in local text files. Full support.
SnakeSQL Pure Python SQL database. Used in the PythonWeb examples. Full support.

MySQL Supported through the MySQLdb module which is included with the web modules. Doesn’t support
transactions or foreign key constraint checks.

Other databases with varying levels of support:

PostgreSQL Support is planned but the authour has no access to a Postgres database so cannot yet write the
wrapper.

ODBC Partially implemented, not yet available. All ODBC databases including MS Access are supported
through themx.ODBCdriver available fromhttp://www.egenix.com/. You will first need to indtall the
mx.BASE package.

MySQL

Warning: The MySQLdbmodule on which the MySQL driver is based automatically commits any changes you
have made to the database when the script exits, regardless of whether you have explicitly committed the changes
in the code. This is different to the behaviour of the other databases and may catch you out so please be aware it
is going on. (If anyone knows how to fix this please, please let the authour know!)

Also, MySQL doesn't explicitly check the foreign key constraints and so won't let you know you try an operation
which would break those constriants.
SQLite

The SQLite implemenation appears robust and fully supports the entire specification.

Warning: TheDate , Time andDateTime fields all use SQLitdext fields and not the correspondiiate
fields so if you have an existing pysqglite database these fields my not be compatible. This may be changed in
future releases of the modules.

ODBC

Implementation not finished. I'm having problems finding an SQL syntax guide to ODBC so that | can implement
correct table create statements. Any ideas would be appreciated.

1.4.12 Example Code

Below is a script to test the database layer. It demonstrates the use of some of the commands:
#!/usr/bin/env python
import sys; sys.path.append(’../../../") # show python where the modules are

import web.database

connection = web.database.connect(
adapter="snakesql",
database="database",
autoCreate = 1,

48 Chapter 1. Web Modules

cursor = connection.cursor()
import datetime

Crete a table using the DB-API 2.0 interface and inset some information

cursor.execute(CREATE TABLE test(columnDate Date, columnString String)’)

cursor.execute(
"INSERT INTO test (columnDate, columnString) VALUES (?, 'This i\s a string with some awkward quoting’
datetime.date(2005,01,27)

)

Retrieve the information
cursor.execute("SELECT * from test WHERE columnDate = '2005-01-27"")
print cursor.fetchall(format="dict’)

Update the row using the abstraction interface and retrieve the information
cursor.update(

table = ’test,

columns = [‘columnStringT],

values = ["James’s New String conta\\\ining an apostrophe and awkward quoting"],

)

print cursor.select(columns="", tables=[test’])

connection.close() # Close the connection without saving changes

1.4.13 API Reference

Warning: Developers using theveb.database API should always specify values in methods by name and
not rely on the position of parameters as the APl may change in future versions.

Module Interface

Access to the database is made available through connection objectsebliatabase module provides the
following constructor for these:

connect (driver,[database] [user,][password][host,][port,] [socket] [**params])
Constructor for creating a connection to a database. RetuCasaection object. Not all databases will
use all the parameters, but databases should use the parameters specified and not abbreviated versions. Any
more complex parameters are passed directly to the drivensect() method.

driverThe type of database to connect to. Can currently 'lgSQLdb’ , 'PySQLite’ or
‘'web.database ' but it is hoped that most database drivers will eventually be supported.

databas@&he database name to connect to.

uselThe username to connect with.

password he password to use.

hostThe host to connect to if the database is running on a remote server.

portThe port to connect to if the database is running on a remote server.

sockeThe socket to connect to if the database is running locally and requires a socket.
**paramsAny other parameters to be passed to the driver

web.database implementers will usually override the methathkeConnection() to provide this func-
tionality as is clear from the source code.

These module globals are also be defined:

version String constant stating the supported DB API level.

version _info A tuple in the same format asys.version _info for example something like
(2,4,0,rcl,’beta’)

1.4. web.database — SQL database layer 49

Connection Objects

Connection objects respond to the following methods as defined in the DB-APt2£e() , commit()
androllback() . Thecommit() androllback() methods should work as specified in the DB-API 2.0.
Even if the database engine doesn't directly support transactions, these facilities should be emulated.

Connection objects also haveeursor() method.

cursor ([execute=Tru§, [format=’tuple’], [convert=Truﬂ, [mode=’portab|e’])
The default values which the cursor abstraction methods will take for the valumeoiite format and
convertcan be set using this method.

formatThis can betuple’ to return the results as a tupletext’ to return as text wrapped to 80
characters for display in a terminadlict’ to return the results as dictionaries’object’ to
return the results as result objects to be treated as dictionaries, tuples or via attribute access.

converConvert the results to standard formats (shouldhe for most users)

executéJsed in the cursor SQL methods. Tifue then rather than returning an SQL string, the methods
execute the results

modeTrhe default mode for thexecute() method. Can béportable’ to use the SQL abstraction
methods ofdirect’ to send the SQL directly to the underlying cursor.

Connection objects also have the following attributes:

tables A dictionary of Table objects with their names as the keys
converters A dictionary of field converter objects for all supported database types.

baseConnection = The DB-API 2.0Connection object

Cursor Objects

close ()
Close the cursor now (rather than whenevedel__is called). The cursor will be unusable from this point
forward; an Error (or subclass) exception will be raised if any operation is attempted with the cursor.

export (tables,[includeCreate:Trué)
Export the tables specified ligiblesas portable SQL including statements to create the tableslifde-
Createis True .

Importing the SQL is then simply a matter of executing the SQL. Here is an example:

backup = cursor.export(tables=["testTable)

cursor.drop(table="testTable’)

for sql in backup.split(\n’):
cursor.execute(sqgl, mode="portable’)

ThetestTable should be exactly the same as it was before the code was executed.
Cursor objects have the following attributes:

connection
This read-only attribute return a reference to the Connection object on which the cursor was created. The
attribute simplifies writing polymorph code in multi-connection environments.

info
A list of Column objects for in the order of the fields from the IZHELECTor None if the last SQL
operation was not &ELECT Column objects contain all the information about a particular field and
provide conversion methods for that field.

baseCursor
The DB-API 2.0Cursor object

sql
A list of tuples of parameters passed to execute() methods

50 Chapter 1. Web Modules

Execute SQL web.database compliant databases support gmark style parameters for substitutions as fol-
lows:

cursor.execute(SELECT * FROM Test WHERE columnName=7",['textEntry’])

execute (sql[, parameter§[,modé)
Prepare and execute a database operation. Parameters are provided as a sequence and will b2 bound to
variables in the operatiormodecan be'direct’ to pass the parameters to the underlying DB-API 2.0
cursor orportable’ to execute the code in a portable fashion.

executemany (sql, manyParamete[smodd)
Similar toexecute() but the operation is executed for each sequenceanyParameters

Fetch Results All these methods take the parametfmsnatandconvert If they are not specified the values
setin thecursor() method of theConnection object is used.

fetchone ([format] ,[convert])
Fetch the next row of a query result set, returning a single sequence, or None when no more data is available.
[6]
An Error (or subclass) exception is raised if the previous call to executeXXX() did not produce any result
set or no call was issued yet.

formatThe format of the results returned. Can’tiet’ to return them as a tuple of dictionary objects,
'tuple’ toreturnthem as a tuple of tuplésbject’ to return them as a tuple dfuple objects
which can be treated as a tuple or a dictionary (or via attribute access for the majority of column
names) oftext’ to return tables designed to be displayed in a terminal 80 characters wide. If not
specified takes the value specified in the cursor which by defatligke’

converCan beTrue to convert the results to the correct typ&slse to leave the results as they are
returned from the base cursor. If not specified takes the value specified in the cursor which by default
is True

fetchall ([format] ,[convert])
Fetch all (remaining) rows of a query result, returning them as a sequence of sequences (e.g. alist of tuples).
An Error (or subclass) exception is raised if the previous call texatute() method did not produce
any result set or no call was issued yet.

The valuedormatandconvertare as specified ifetchone()

Cursor Abstraction Methods It is assumed that éxecutds True in the following methods then you wish to
be executing the code in portable mode, otherwise it is unlikely you would be using abstraction methods.

If you did wish to execute code in direct mode (through the DB-API 2.0 cursor) you could do the following:

sql = cusror.select(columns=[*], tables=[table’], execute=False)
cursor.execute(sqgl, mode="direct’)

Warning: It is possible to get the cursor abstraction methods to perform operations they were not designed for.
For example, ircursor.select() you could specify one of the columns ‘@/G(columnName)’ . This

would produce an SQL statement which would return the mean value of the caoltnmnName on some
databases but certainly not on all and therefore breaks the specification which states that columns should be a list
of column names. To ensure database portability please stick to the published API.

select (tables, columns,[values:[],][where:None,][order:None,][execute:None,][fetch:None,

] [**params|)
Build an SQL string according to the options specified and optionally execute the SQL and return the results

in the format specified. No error checking on field names if the SQL string is only being built. Strict error
checking is only performed when executing the code.

1.4. web.database — SQL database layer 51

tablesA string containing the name of the table to select from or if selecting from multiple tables, a sequence
of table names.

columnsA sequence of column names to select. Can be a string if only one column is being selected. If se-
lecting from multiple tables, all column names should be in the featsieName.columnName’

valued list of values to substitute fd? in the WHERElause specified byhere

whereThe WHERE clause asweb.database list as returned byursor.where() . If whereis a
string it is converted to the correct format.
orderThe ORDER BY clause asweb.database list as returned bgursor.order() . If orderis a

string it is converted to the correct format.

executdf False the method returns the SQL string needed to perform the desired operatidnge Ithe
SQL is executed and the results converted and returned in the appropriate form. If not specified takes
the value specified in the cursor which by defaulfige

fetchwhether or not to fetch the results. Tfue andexecutds not specifiecexecutds set toTrue . If
True andexecutdralse an error is raised.

**paramsThe parameters to be passed tofetehall() method iffetchis True

insert (table, columns, values, sqlVaIu{execute])

Insert values into the columns in table. Eitivatuesor sglValuescan be specified but not both.

tableThe name of the table to insert into

columnsA sequence of column names in the same order as the values which are going to be inserted into
those columns. Can be a string if only one column is going to have values inserted

valuesA sequence of Python values to be inserted into the columns named @oltiransvariable. Can
be the value rather than a list if there is only one valuezalfiesis specified theisqglValuesmust be
either an empty sequence or contain a list of all quoted SQL strings for the columns specified in which
casevaluescontains the Python values of the SQL strings to be substitute® foarameters in the
sqlValuessequence.

sqlValue#\ sequence of quoted SQL strings to be inserted into the columns namedcioltihensvariable.
Can be the value rather than a list if there is only one valusglWaluess specified and contair
parameters for substitution thealuescontains the values to be substituted. Otherwesleiesmust
be an empty sequence.

executdf False the method returns the SQL string to perform the desired operatiofsudf the SQL is
executed. If not specified takes the value specified in the cursor which by defauleis

insertMany (table, columns, values, sqlVaIu{executé)

Same afmsert() except thavaluesor sqlValuescontain a sequence of sequences of values to be inserted.

update (table, columns, values, sqIVaIu[aSNhere] [executé)

Update the columns in table with the values. Eitha&liuesor sglValuescan be specified but not both.

tableA string containing the name of the table to update

columnsA sequence of column names in the same order as the values which are going to be updated in those
columns. Can be a string if only one column is going to have values inserted

valuesA sequence of Python values to be inserted into the columns named @oltiransvariable. Can
be the value rather than a list if there is only one valuezalfiesis specified thersqlValuesmust be
either an empty sequence or contain a list of all quoted SQL strings for the columns specified in which
casevaluescontains the Python values of the SQL strings to be substituted foarameters in the
sglValuessequence. If there are more values specifiedhinesthansqlValueshe remaining values
are used to substitute f@rparameters imvhere

sqlValue#\ sequence of quoted SQL strings to be inserted into the columns namedcioltihensvariable.
Can be the value rather than a list if there is only one valuegINaluess specified and contaira
parameters for substitution thealuescontains the values to be substituted. Otherweleiesmust
be an empty sequence.

whereThe WHERE clause asweb.database list as returned byursor.where() . If whereis a
string it is converted to the correct format.

52

Chapter 1. Web Modules

executdf False the method returns the SQL string to perform the desired operatiofhsudf the SQL is
executed. If not specified takes the value specified in the cursor which by defatleis

delete (table,[valueszﬂ][,where] [executé)
Delete records from the table accordingitbere

tableA string containing the name of the table to select from or if selecting from multiple tables, a sequence
of table names.

values list of values to substitute fd? in the WHERElause specified byhere

whereThe WHERE clause asweb.database list as returned byursor.where() . If whereis a
string it is converted to the correct format.

executdf False the method returns the SQL string to perform the desired operatiohsudf the SQL is
executed. If not specified takes the value specified in the cursor which by defatleis

create (table, columns[, values:|]] [executé)
Create table with fields specified by fields. fields is a tuple of field tuples which can be obtained as follows:

columns = [
cursor.column(field options...
cursor.column(field options...
cursor.column(field options...
cursor.column(field options...

— N N

tableThe table name as a string.
columnsA sequence of field tuples returned dyrsor.column()
valueA sequence of values to substitute for default values in the columns

executdf False the method returns the SQL string to perform the desired operatiofigudf the SQL is
executed. If not specified takes the value specified in the cursor which by defauleis

drop (table[, executd)
Remove a table
tableA string containing the name of the table to drop.

executdf False the method returns the SQL string to perform the desired operatiofirudf the SQL is
executed. If not specified takes the value specified in the cursor which by defauleis

_function (function, table, cqumr{,,where=Noné[, values=[]])
Returns the result of applying the specified function to the field

’)

functionThe function to be applied, can bmax’ ,’'min’ ,’sum’ or’'count’
tableThe name of the table

columnThe name of the field

whereAn optional where clause

values list of values to substitute fd? parameters in th&/HERElause

max(table, columr{,wherezNond[,values=|]])
Returns the highest value of the column.
tableThe name of the table
columnThe name of the column
whereAn optional where clause
valued/alues to substitute fd? parameters in the where clause.

min (table, columr{,where:Noné[,values:ﬂ])
Returns the lowest value of the column.

tableThe name of the table

1.4. web.database — SQL database layer 53

columnThe name of the column
whereAn optional where clause
valued/alues to substitute fd? parameters in the where clause.

count (table, columr{,where:Noné[,values:[]])
Count the number of rows in the table matchimigere If whereis not specified, count all rows.
tableThe name of the table
columnThe name of the column
whereAn optional where clause
valued/alues to substitute fd? parameters in the where clause.

Helper Methods Helper methods build the data structures which should be passed@uibker abstraction
methods.

column (name, typ[a, required:O][, unique:O][, primaryKey:O][, foreignKey:Nom}[, default:Nond)
Return a column tuple suitable for use in the columns tuple used icrdage() method.

Bool , Float , Binary andText columns cannot be used as primary keys or unique coluBingry
andText columns cannot have default values.

nameThe name of the field as a string.

typerhe field type. This can take one of the valu@ool’ |, 'String’ ,'Text' ,'Binary’ ,’Long’ ,
'Integer’ ,'Float’” ,’'Date’ ,'Time’ ,’'Datetime’

requiredWhether or not the field is required. Settinglaie means the field cannot hadtJLL values.

uniqueSet toTrue if the value must be unique. Two fields in the column cannot have the same value unless
that value is NULL

primaryKeyThe field is to be used as a primary key, the field has the same behaviour as being unique and
required but no default value can be set

foreignKeyThe field is to be used as a foreign key, the value should be the name of the table for which this is
a child table.Note: There is no need to specify the column name as tables can only have one primary
key.
defaultThe default value for the field to be set to. If not specified the default is NULL
where (where,[values:[]])

Return a parse&/HERElause suitable for use in tiselect() ,update() anddelete() methods of
thecursor object.

whereA string containing th&WVHERElause. Can include tHdKE operator which is used as follows:

WHERE columnName LIKE %s1%s2%s

Every % sign is matched against zero or more characters.
Note: whereshould not include the stringVHERE’ at the beginning.

valued list of values to substitute fd? parameters in th&/HERElause

order (order)
Return a parse@RDER BYlause suitable for use in tlselect() method of thecursor object.

orderA string containing th@©RDER BYlause Note: order should not include the strin@RDER BY’
at the beginning.

54 Chapter 1. Web Modules

Table Objects

Table objects can be accessed throughtdi#des attribute of theConnection object like this:

>>> print connection.tables['tableName’].name

tableName

>>> print connection.tables['tableName’]['columnName’].name
columnName

classTable
Table objects store all the meta data there is to know about an SQL table. They are created by the
web.database module and should not be created manually. They are simply structures to hold table
information. The values should not be changed.

Table objects have the following attributes:

name
The name of the table correctly capitalised

columns
A list of Column objects describing each column of the table
primaryKey
The name of the primary key column of the tableName if no primary key is specified

parentTables
A list of the names of any tables for which the table has foreign key fields

childTables
A list of the names of any tables for which the table is a parent table

and the following methods:
has _key (columnNamg

columnExists (columnNamg
ReturnsTrue if columnNamés the name of a column in the table

column (columnNamg

__getitem __(columnNamg
Returns the column object faolumnName

Table objects can also contain any other useful methods which the module implementer feels are appropriate.

Column Objects

Column objects store all the information there is to know about a particular coluBmiumn objects can be
accessed through tlennection.tables dictionary which contains all columns or througlrsor.info

which contains a tuple corresponding to @@umn objects selected aftet2ELECTstatement has been executed
in portable mode (oNone after any other SQL operation).

>>> cursor.select(columns=['columnName’], tables=['tableName’], execute=True)
>>> print cursor.info[0].name

columnName

>>> print cursor.info[0].table

tableName

classColumn name
The name of the column

type
The capitalised string representing the column type

1.4. web.database — SQL database layer 55

baseType
The capitalised string representing the column type of the base type

table
The table of which the column is a part
required
Can beTrue or False depending on whether or not the column value is required (i.e. cannot be
NULL)
unique
True if the field should be uniquésalse otherwise
key
True if the field is a primary keyfralse otherwise
default
The default value of the field
converter
A reference to th€onverter object for the field type
position

The position of the field in the tuple returned 82LECT * FROM table

Converter Objects

Converter objects contain methods to convert values between SQL and Python objects and to convert values
returned by the database driver into the correct Python typenverter objects are accessed through the
converter attribute of the correspondirigolumn object.

Example: convert a list of values selected from a database to their SQL encoded equivalents

>>> cursor.select(columns=['tablel.columnOne’, 'table2.column2’], tables=[tablel’, 'table2’], execute=True)
>>> results = cursor.fetchall()
>>> record = results[0]
>>> newRecord = []
>>> for i in range(len(record)):
newRecord.append(cursor.info[i].converter.valueToSQL(record][i]))

classConverter valueToSQL (v
Convert a Python object to an SQL string

sqlToValue (value
Convert the an SQL string to a Python object

databaseToValue (valug
Convert the value stored in the database to a Python object

valueToDatabase (value
Convert a Python object to the format needed to store it in the database

type
A string representing the column type

sqlQuotes
True if the SQL representation should be quotEdlse otherwise

Converter objects are also available as a dictionary with column types as the keys esntverters at-
tribute of theConnection object.

56 Chapter 1. Web Modules

1.4.14 Developer’s Guide
Implementing the Classes

Virtually all the functionality of the API has been implemented as base classes from which module implementers
simply need to derive their own classes, over-riding methods to suit their particular database syntax as necessary.

In particular this requires writing custom converter methods to ensure that the database returns the correct values,
overriding themakeConnection() method to convertonnect() = method parameters to the appropriate

form for the driver, and overriding the cursor abstraction methods so that they build the correct SQL strings from
the parameters.

web.database implementation comes with basic implementations for PySQulith.database and a par-
tial implementation for MySQLdb (transaction support isn’t implemented). These can all be used as examples.

If a particular database engine does not natively support part of the API it should be emulated in the derived classes
even if it is difficult or slow to do so.

Creating the Dictionary

The implementation should contain a dictionary nardeder in the sub-package of the main module named
pdbc . So for exampleweb.database will have a modulewveb.database .pdbc which will contain a
dictionary namediriver similar to the following:

driver = {

‘converters’:{
'String’: base.BaseStringConverter(),
Text base.BaseTextConverter(),
‘Binary”: base.BaseBinaryConverter(),
'Bool’”: base.BaseBoolConverter(),
‘Integer’: base.BaselntegerConverter(),
‘Long’: base.BaselLongConverter(),
'Float”: base.BaseFloatConverter(),
'‘Date’: base.BaseDateConverter(),
'‘Datetime’: base.BaseDatetimeConverter(),
"Time”: base.BaseTimeConverter(),

}

‘columnClass’:base.BaseColumn,
‘tableClass’:base.BaseTable,
‘cursorClass’:Cursor,
‘connectionClass’:Connection,

WhereConnection andCursor are classes derived frobase.Connection andbase.Cursor respec-
tively.

1.4.15 Tools Under Development

This section describes certain tools basedveb.database which are currently under development.

Interactive Prompt

web.database makes it possible to write a MySQL-style interactive prompt applications to perform operations
on a database from a command prompt or over telnet or SSH. In this way the same command prompt application
can manipulate evenyeb.database compliant database from the same application.

1.4. web.database — SQL database layer 57

Object-Relational Mapper

Once an SQL standard and fixed data types have been set it becomes easy to write an object relational mapper.
This also offers the opportunity to create custom field types basedebrdatabase ones.

Theweb.database API specifies a methodbject() of the connection object. This returns an object rela-
tional mapper already setup for the database being used so that if desired the database can be accessed entirely
without any knowledge of SQL.:

sqlDictionary = connection.object()
table = sqlDictionary['testTable’]

row = table['testRow’]

name = row['name’]

row['birth’] = datetime.date(1980,10,10)

Web Based Admin

It also become possible to define HTML fields for each data type (and therefore each derivative data type) so that
web-based editing of web.database compliant database becomes very simple.

1.4.16 Future Additions

This section is just a list of currently excluded features which might be useful in the next version. They are in the
order of importance:
e Autoincrement Integer fields

e Support fortUPDATE SET TOTAL = TOTAL + 10€yntax
This is a list of things currently not included in the module but which may be of use later on:

e Make sure max and min work in all cursors for all field types

e Check table aliases actually work!

e Caching of all values to save on SQL calls

e Checking type conversions for ODBC and also the mx.DateTime issues
e Fixing and testing oélter()

e Table copying code

e Executemany support

1.5 web.database.object — An object relation mapper built on the
web.database and web.form modules

Theweb.database.object module is an object-relational mapper. It allows you to simply define complex
database structures in Python code and then create the necessary tables automatically. It then allows you to
manipulate the Python objects you have defined to transparently manipulate the underlying database including the
facility to use multiple joins without knowing any SQL.

Furthermore the table column classes are derived fragb.form.field objects which means you can
transparently create HTML interfaces to edit the data structures through a web browser. This makes

58 Chapter 1. Web Modules

web.database.object module ideal as a middle layer for writing data-driver websites although it has
broader uses as well.

A database object can in theory have any storage driver (text, XML, SQL Datbase, DBM) although currently only
a driver for theweb.database module has been written. This means that any storage system with a driver
for web.database can be used withveb.database.object . This currently includes MySQL, ODBC,
SQLite and, to an extent, Gadlfy.

1.5.1 Introduction
Requirements

To use web.database.object you need Python 2.2 or above and the Web Modules of which
web.database.object is a part and an SQL database supported bywbk.database module and its
associated Python driver. If you use MuSQL, a MySQL database is needed, alternatively use an ODBC database
such as MS Access. Theeb.database driver is included with the Python Web Modules but you will need to
download and install the ODBC driver from thep://www.eGenix.com site yourself as it comes with a non open
source licence.

Compared To Other Database Wrappers

There are several object-relational mappers for Python and a series of basic database wrappers similar to
web.database . The authour cannot comment deeply on these.

web.database.object is most similar to SQLObject available fromtp://www.sglobject.org in that it creates
objects that feel similar to normal Python objects and can be accessed and manipulated in a familiar way.

Modules like SQLObject andweb.database.object differ from modules such as PyDO or the
web.database module which simply provide more Python-like ways of executing SQL queries and then pack-
age up the database returns into more useable forms such as dictionariegeblti@tabase.object com-

pletely removes any need to know any SQL. You just manipulate the objects themselves and the rest is done for
you. This makes SQL programming extremely simple and still gives you full control over the information stored

in the database.

What separateseb.database.object from some other software is the strong typing of the data. If you
are accessing the property of a Date field the object will llatatime.Date object. If you are setting an
Email field, only strings in the format of an email address will be allowed. The module also direct support for
one-to-many and many-to-many mappings which means you can build complex data structures.

Because the software interfaces the database throwgdgbalatabase cursor (in principle it could interface
to other drivers as well) the code written will be database independant and run on any database supported by the
web.database module.

web.database.object uses classes derived frohable , Database andweb.form.field classes to
facilitate this integration. Some ORMSs use code generation to create an interface, expressing the schema in a
CSV or XML file (for example, MiddleKit, part of Webware). By using normal Python objects you are able to
comfortably define your database in the Python source code. No code generation, no weird tools, no compilation
step.

What truly separateseb.database.object from any other ORM in any language (to the authour’s knowl-
edge - correct me please if | am wrong) is that on top of all the features mentioned above, the columns used to
store the SQL data are also instancesveb.form.field.typed and the tables have the ability to generate
web.form Form objects. This means itis possible to create HTML interfaces to edit the database data automati-
cally and in such a way that the user can only enter valid data otherwise the user will be asked to make corrections.
This functionality makes building complex web databases much simpler.

1.5. web.database.object — An object relation mapper built on the web.database and 59
web.form modules

1.5.2 Introductory Example

Below is about the simplest possible example where a database object MyDathbase is created. The
database object is connected to an SQLite database nalojext-simple.db but could equally well be a
MySQL database or ODBC supported database like MS Access.

import web.database, web.database.object

connection = web.database.connect(type="sqlite",database="object-simple.db")
cursor = connection.cursor()

person = web.database.object.Table("Person")
person.addColumn(web.database.object.String(name="firstName"))
person.addColumn(web.database.object.String(hame="surname"))

database = web.database.object.Database()
database.addTable(person)
database.init(cursor)

This first lines import the modules we need and makentbk.database connection. We could have made any
database connection supported byweb.database module. Below are some other examples for the 3rd line.

connection
connection

web.database.connect(type="odbc", database="AccessDatabase")
web.database.connect(type="mysqgl", host="pythonweb.org", user="james", password="hello")

The database will contain one table nanigtson . The Person table has two columns, both of which are
String columns. One is namdilstName and the othesurname . All web.database.object column
objects must take mameparameter and this is used as the column name.

Once we have finished defining our table we createeh.database.object.Database() which will

be the object we use to manipulate the database. We add out table definition to the database definition using
database.addTable(person) and then initilise the database to associate it with the live databaseusing
database.init(cursor)

Warning: Once a database object is initialised you cannot add any more tables or modify the database’s structure
in any way.

Now we have defined and initialised out database we can start using it. If the table does not already exist in the
live database we need to create it as follows:

if not database.tablesExist():
database.createTables()
print "Created Table"

This command creates every table the database needs (in our case just the one). If you decide to change the
structure of the tables at a later date after you have created the tables in the live database you will need to remove
them all usingdatabase.dropTables() and recreate them from scratch. This means you would loose all

the information so it is important to decide on the correct structure before creating the tables.

All information in the database can be accessed through a dictionary-like interface. For example the database
object acts like a dictionary of tables and each table acts like a dictionary of rows. Each row acts like a dictionary
of field values.

Now we have created the table we are free to add, edit and remove data. Following on from the previous example.

60 Chapter 1. Web Modules

>>> john = database['Person’].insert(firstName="John", surname="Smith")
>>> print john[firstName’]

John

>>> print john['surname’]

Smith

>>> john['surname’] = 'Doe’

>>> print john['surname’]

Doe

>>> print john['rowid’]

1

In this way you can create and modify the table information. Take note of thedinejohn['rowid’]
new object (which is equivalent to a row in the table) is given a unique integer number namedithe by which

it can be identified.

We can use this rowid to retrieve John Smith’s information from the database at a later time. There are two ways

to retrieve rows from the table using the rowid:

>>> rowl = database['Person’][1]
>>> row2 = database['Person’].row(1)
>>> print rowl == row2 == john
True

Once you have made changes to the database you will need to commit your changes using
connection.commit() otherwise your changes may be lost. By the end of this session our database table

looks like this:

Tables in the ’'test’ database

R RE— +
| Tables_in_test |

[R —— +

| Person [
[R — +

The Person table

+ + + +
t t 1 t

| rowid | firstName | surname |

+ + + +
| 1 | John | Doe |
+ + + +

Thats about all there is to it!

Full Code Listing

Here is a complete code listing so that you can experiment:
#!/usr/bin/env python
import sys; sys.path.append(’../../../") # show python where the modules are

import web.database, web.database.object

connection = web.database.connect(
adapter="snakesq!",
database="database-object-simple",
autoCreate = 1,

. Each

1.5. web.database.object — An object relation mapper built on the web.database
web.form modules

and

61

cursor = connection.cursor()

person = web.database.object.Table("Person")
person.addColumn(web.database.object.String(name="firstName"))
person.addColumn(web.database.object.String(hame="surname"))

database = web.database.object.Database()
database.addTable(person)
database.init(cursor)

if not database.tablesExist():
database.createTables()
print "Created Table"

john = database['Person’].insert(firstName="John", surname="Smith")
print john[firstName’]
print john['surname’]

john['surname’]l = 'Doe’
print john['surname’]

print john['rowid’]

rowl = database['Person’][1]
row2 = database['Person’].row(1)
print rowl == row2 == john

connection.close() # Close the connection without saving changes

The output is:

Created Table
John

Smith

Doe

1

1

Note: If you run the code more than once you will be adding lots of John Smiths to the test database and so the
rowid value will be one larger each time you run the code. After the first time you run the code tGzdizted
Table will not be output since the table will already be created.

Using Alternative Keys
In the example above we could access John Smith’s information as follows:

>>> rowl
>>> row2

database['Person’][1]
database['Person’].row(1)

We could have defined treairname column differently and added it like this instead:

person.addColumn(web.database.object.String(hname="surname", unique=True, required=True, key=True))

This defines the surname as a unique, required figlijuemeans that there cannot be two people with the same
surname in the database. If you try to add two people with the same name an Exception will beregjisizeld
means that you must always enter a surname, although in out example, becpusslis not specified for the
firstName column, you would not have to enter a firstName.

62 Chapter 1. Web Modules

SpecifyingkeyasTrue for the surname tells the table that you want to be able to retrieve data from the database
based on the surname column rather than the rowid. We can now try the following:

>>> rowl = database['Person’]['Smith’]
>>> row2 = database['Person’].row(1)
>>> print rowl == row2

True

You can still access the information by rowid using tbe/() method.

Any column can be specified as a key but there can only be one column in each table specified as a key. Any
column specified as a key must also be specified as unique and required.

Available Columns

There are a number of column types available for use withviite database.object module. These include:
String , StringSelect , Text , Bool , Integer , IntegerSelect , Float , FloatSelect , Date,
DateSelect , Time, TimeSelect , DateTime , DateTimeSelect ,Email andURL

Each web.database.object column is derived for the correspondingeb.form.field field which
means it behaves in exactly the same way. You can see the available optionsviebtifierm.field doc-
umentation. Eaclveb.database.object column has two more parameters in addition to those of its corre-
spondingweb.form.field . These areiniqueandkeydescribed in the previous example.

1.5.3 One-To-Many Mappings

One of the features that distinguishes this module from many others is its ability to deal with more complex
datastructures than just simple tables. As an example of a one-to-many mapping we will consider an address
book.

In our address book each person can have many addresses but each address is only associated with one person.
The data structure looks like this:

+-- Address 1
Person 1 --|
+-- Address 2

To create a database to describe this struture we need two tables, a Person table and an Address table.

1.5. web.database.object — An object relation mapper built on the web.database and 63
web.form modules

import web.database, web.database.object
connection = web.database.connect(type="sqlite", database="object-multiple.db")
cursor = connection.cursor()

person = web.database.object.Table("Person")
person.addColumn(web.database.object.String(name="firstName"))
person.addColumn(web.database.object.String(hame="surname"))
person.addMultiple(name="addresses", foreignTable="Address")

address = web.database.object.Table("Address")
address.addColumn(web.database.object.String(name="firstLine"))
address.addColumn(web.database.object.String(name="postcode"))
address.addSingle(name="person", foreignTable="Person")

database = web.database.object.Database()
database.addTable(person)
database.addTable(address)
database.init(cursor)

As in the introductory example we use thédColumn() method to add€Column objects to the Address table.
This time however we also use taddSingle() = method to add a column nampdrson to the table. We have
also usecaddMultiple() method to add a multiple join calletidresses from the Person foreign table to
the Person table. The final change is that we have addeitdihieess table to the database.

Note: We in theaddSingle() = andaddMultiple() methods we refer to thiereignTable by the string
representing its name and not the object itself.

When we access a persomddresses key, we will get back a list of all the Address objects associated with
that person. Continuing the example above:

>>> john = database['Person’].insert(firstName="John’, surname='Smith’)
>>> print john['surname’]

Smith

>>> print john['addresses’]

¢
>>> database['Address’].insert(person=john, firstLine="12 Friendly Place’, postcode="OX4 1AB’)

>>> database['Address’].insert(person=john, firstLine="3a Crazy Gardens’, postcode="OX1 27ZX’)
>>> for address in john['addresses’].values:
print address['firstLine’]

12 Friendly Place
3a Crazy Gardens

Note how we specify the person to add the address to pgEirgpn=john . We could alternatively have specified

the rowid of the person to add the address to. Just like the database, tables and rows, the value returned by
john['addresses’] behaves like a dictionary. In this example we usedibes() method to return a list of the
Rowobjects.

It should be noted that you cannot set the values of multiple columns likaddeesses’ column directly.
Instead you should set the values of each object induvidually.

>>> john['addresses’] = something # XXX Doesn’'t work!

Again you muct useursor.commit() to commit the changes to the database.

Just for interest here is how the tables look in the live database. You can see that the person column in the Address
table contains the rowid in the Person table of the person to associate the address with.

64 Chapter 1. Web Modules

Tables in the ’'test’ database

S R —— +

| Tables_in_test |

L —— +

| Address |
| Person |
R ——— +

The Person table

+ + + +

| rowid | firstName | surname |

+ + + +

| 1 | John | Smith |

The Address table

| rowid | firstLine | postcode | person |

+ + + + +

| 1 | 12 Friendly Place | OX4 1AB | 1 |
+ + + + +

| 2 | 3a Crazy Gardens | OX1 2zX | 1 |

+

Full Code Listing

Here is a complete code listing so that you can experiment:
#!/usr/bin/env python
import sys; sys.path.append(’../../../") # show python where the modules are

import web.database, web.database.object

connection = web.database.connect(
adapter="snakesq!",
database="database-object-multiple",
autoCreate = 1,

)

cursor = connection.cursor()

person = web.database.object.Table("Person")
person.addColumn(web.database.object.String(name="firstName"))
person.addColumn(web.database.object.String(hame="surname"))
person.addMultiple(name="addresses", foreignTable="Address")

address = web.database.object.Table("Address")
address.addColumn(web.database.object.String(name="firstLine"))
address.addColumn(web.database.object.String(name="postcode"))
address.addSingle(name="person", foreignTable="Person")

database = web.database.object.Database()
database.addTable(person)
database.addTable(address)
database.init(cursor)

if not database.tablesExist():
database.createTables()
print "Created Table"
else:

1.5. web.database.object — An object relation mapper built on the web.database and
web.form modules

raise Exception('Tables not created’)
john = database['Person’].insert(firstName='John’, surname='Smith’)
print john['surname’]
print john['addresses’]

database['Address’].insert(person=john, firstLine="12 Friendly Place’, postcode="OX4 1AB’)
database['Address’].insert(person=john, firstLine="3a Crazy Gardens’, postcode="OX1 2ZX’)

for address in john['addresses’].values():
print address['firstLine’]

connection.close() # Close the connection without saving changes

The output is:

Created Table
Smith

{
12 Friendly Place

3a Crazy Gardens

You will need to delete the database fitdject-multiple.db’ each time you run the cose so that it can be recreated
each time.

1.5.4 Many-To-Many Mappings

In a real life more than one person might live at the same address and each person might have multiple addresses.
The relationship is actually a many-to-many mapping. Have a look at the code below:

import web.database, web.database.object
connection = web.database.connect(type="sqlite", database="object-multiple.db")
cursor = connection.cursor()

person = web.database.object.Table("Person")
person.addColumn(web.database.object.String(name="firstName"))
person.addColumn(web.database.object.String(name="surname"))
person.addRelated(name="addresses", foreignTable="Address")

address = web.database.object.Table("Address")
address.addColumn(web.database.object.String(name="firstLine"))
address.addColumn(web.database.object.String(name="postcode"))
address.addRelated(name="person", foreignTable="Person")

database = web.database.object.Database()
database.addTable(person)
database.addTable(address)
database.init(cursor)

We have now related the two tables using th@édRelated() method of each class instead of using
addMultiple() andaddSingle()

Note: Because the two Classes use related joingddtabase.createTables() method actually creates

an intermediate table to store the relationships. The modules hide this table so you don't need to worry about
it to useweb.database.object . If you are interested the table is named by taking the two tables in al-
phabetical order and joining thier names with an underscore. For example the table in the example above will
create a table naméadrress _Person’ . This name can be customised by deriving a customised class from
web.database.object.Table and overriding the relatedTableName() method of both tables.

Here is an example:

66 Chapter 1. Web Modules

>>> john = database['Person’].insert(firstName="John’, surname='Smith’)
>>> owen = database['Person’].insert(firstName="Owen’, surname='Jones’)
>>>
>>> friendlyPlace = database['Address’].insert(firstLine="12 Friendly Place’, postcode='"MK4 1AB’)
>>> crazyGardens = database['Address’].insert(firstLine="3a Crazy Gardens’, postcode="OX1 2ZX’)
>>> greatRoad = database['Address’].insert(firstLine="124 Great Road’, postcode="JG6 3TR’)
>>>
>>> john.relate(friendlyPlace)
>>> owen.relate(greatRoad)
>>> crazyGardens.relate(john)
>>>
>>> print john['addresses’].keys|()
[MK4 1AB’, 'OX1 2ZX]
>>> for address in john['addresses’].values():
print address['postcode’]

MK4 1AB

OX1 2zX

>>> print greatRoad['people’].keys()

[Owen’]

>>> print owen['addresses’|['[JG6 3TR’]['people’].keys()

[[Owen’]

>>> john['addresses’][MK4 1AB’][firstLine’] = 'The Cottage, 12 Friendly Place’
>>> print database['Person’]['John’]['addresses’][MK4 1AB’|[firstLine’]

The Cottage, 12 Friendly Place

The code should be fairly self-explainatory. We are inserting some different people and addresses into the table
and the relating them to each other. Each row from each table can be related to as many other rows from the other
table as you like. Or a row might not be related to another one at all.

It should be noted that you cannot set the values of multiple columns likKadodeesses’ column directly.
Instead you should set the values of each object induvidually.

>>> john['addresses’] = something # XXX Doesn’t work!

You can create fairly complex expressions as is demonstrated by the expression:

database['Person’]['John’]['addresses’]MK4 1AB’|['firstLine’]

Here we are selecting all the addresses from the'dolnn’ from the’Person’ table and then selecting the
first line of the address with postcotddK4 1AB’ . It is actually possible to create circular references (although
not very useful) as shown below.

>>> john == database['Person’][John’] ==

... database['Person’]['John’][addresses’|MK4 1AB|['people’]['John’] \

... == database['Person’]['John’]['addresses’][MK4 1AB’|['people’]['John’] \
... [addresses’]MK4 1AB’]['people’]['John’]

True

Just for interest here is how the tables look after running the example. You can see that the ARkhsmstable
contains the rowids of the related people and addresses.

1.5. web.database.object — An object relation mapper built on the web.database and 67
web.form modules

Tables in the ’'test’ database

L —— +
| Tables_in_test |

[R —— +

| Address |
| Person [
| Address_Person |
R ——— +

The Person table

+ + + +
| rowid | firstName | surname |

+ + + +

| 1 | John | Smith |
+ + + +

| 2 | Owen | Jones |
+ + + +

The Address table

+ + + +
| rowid | firstLine | postcode |

+ + + +

| 1 | The Cottage, 12 Friendly Place | MK4 1AB |

| 2 | 3a Crazy Gardens | OX1 2zX |
+ + + +

| 2 | 124 Great Road | JG6 3TR |
+ + + +

The Address_Person table

S S— S R— +
| people | addresses |

[— B R —— +

| 1 |1 I
[B —— +

| 2 | 2 I
S — R R— +

| 1 | 3 I
[B —— +

It should be noted that each table can contain as many columns, multiple, related and single joins as you like.

Full Code Listing

Here is a complete code listing so that you can experiment:
#!/usr/bin/env python
import sys; sys.path.append(’../../../") # show python where the modules are

import web.database, web.database.object

connection = web.database.connect(
adapter="snakesq!",
database="database-object-related",
autoCreate = 1,

)

cursor = connection.cursor()

person = web.database.object.Table("Person")

68 Chapter 1. Web Modules

person.addColumn(web.database.object.String(name="firstName", unique=True, required=True, key=True))
person.addColumn(web.database.object.String(hame="surname"))
person.addRelated(name="addresses", foreignTable="Address")

address = web.database.object.Table("Address")
address.addColumn(web.database.object.String(name="firstLine"))
address.addColumn(web.database.object.String(name="postcode", unique=True, required=True, key=True))
address.addRelated(name="people", foreignTable="Person")

database = web.database.object.Database()
database.addTable(person)
database.addTable(address)
database.init(cursor)

if not database.tablesExist():
database.createTables()
print "Created Table"

john = database['Person’].insert(firstName="John’, surname='Smith’)
owen = database[Person’l.insert(firstName="Owen’, surname='Jones’)

friendlyPlace = database['Address’].insert(firstLine="12 Friendly Place’, postcode="MK4 1AB’)
crazyGardens = database['Address’].insert(firstLine='3a Crazy Gardens’, postcode="OX1 2ZX’)
greatRoad = database['Address’].insert(firstLine="124 Great Road’, postcode="JG6 3TR’)

john.relate(friendlyPlace)
owen.relate(greatRoad)
crazyGardens.relate(john)

print john['addresses’].keys()
for address in john['addresses’].values():
print address[’postcode’]

print greatRoad['people’].keys()
print owen['addresses’][[JG6 3TR’]['people’].keys()

john['addresses’]'MK4 1AB’|[firstLine’] = 'The Cottage, 12 Friendly Place’
print database['Person’]['John’]['addresses’][MK4 1AB'][firstLine’]

connection.close() # Close the connection without saving changes

The output is:

Created Table

[MK4 1AB’, 'OX1 2zZX]

MK4 1AB

OX1 2zX

[Owen’]

[Owen’]

The Cottage, 12 Friendly Place

You will need to delete the database fitdject-related.db’ each time you run the cose so that it can be recreated
each time.

1.5.5 Building Queries

You can build complex data structures because each table can contain as many columns, multiple, related and
single joins as you like. This isn’t a lot of use if you cannot then select the information you want. So far you
know how to select data using a series of keys or rowids but the power of SQL is in being able to perform complex
gueries on that information. Theeb.database.object module has a facility for doing just that.

1.5. web.database.object — An object relation mapper built on the web.database and 69
web.form modules

For this example we create two tables:

import web.database, web.database.object, datetime

connection = web.database.connect(type="sqlite",database="object-query.db")
cursor = connection.cursor()

person = web.database.object.Table("Person")
person.addColumn(web.database.object.String(name="firstName"))
person.addColumn(web.database.object.String(hname="surname", unique=True, required=True, key=True))

queryExample = web.database.object.Table('QueryExample’)
queryExample.addColumn(web.database.object.Date(hame="testDate"))
gueryExample.addColumn(web.database.object.Integer(name="testinteger"))
gueryExample.addColumn(web.database.object.Integer(name="testNumber"))
queryExample.addColumn(web.database.object.Email(name="email"))

database = web.database.object.Database()
database.addTable(person)
database.addTable(queryExample)
database.init(cursor)

database['Person’].insert(firstName="John", surname="Smith")
database['Person’].insert(firstName="Owen", surname="Jones")
database['QueryExample’].insert(

testDate=datetime.date(2004,7,11),

testinteger = 10,

testNumber = 15,

email = ’james@example.com’

To match any rows where tHf@stName is 'John’ we make use of theolumn attribute of each table. The
column attribute is a magic dictionary which allows you to compare columns to objects in natural Python code to
produce a where clause string. It is best explained by an example:

>>> where = database['Person’].column[’firstName’] == "John"

>>> print where

(Person.firstName = 'John’)

>>> rows = database[Person’].select(where=where)

>>> print rows

{'Smith’: <web.database.object.Row from Person table, rowid=1, firstName="John’, surname='Smith’>}

Here are some more examples.

>>> column = database['queryExample’].column
>>> column.date == datetime.date(2003,12,12)
"(QueryExample.testDate = '2003-12-12')"

>>> column.integer < 5
"(QueryExample.testinteger < 5)"

You can also do more complex queries using AND, OR or NOT. There are two ways of doing this. Both methods
are equivalent so please use whichever one you prefer.

Using Methods AND ORor NOTare methods of th@ueryBuilder class.

70 Chapter 1. Web Modules

>>> where = column.AND(column.email == 'james@jimmyg.org’, column.integer < 5)
"QueryExample.email = ’james@jimmyg.org’) AND (QueryExample.testinteger < 5)"
>>> where = column.NOT(column.email == ’james@jimmyg.org’)

"NOT (QueryExample.email = ’james@jimmyg.org’)"

Using Operators The operator®., | or™ are defined to mean AND, OR or NOT respectively. You can use them
to achieve the same result as above like this:

>>> where = (column.email == ’james@jimmyg.org’) & (column.integer < 5)
"QueryExample.email = ’james@jimmyg.org’) AND (QueryExample.testinteger < 5)"
>>> where = “(column.email == ’james@jimmyg.org’)

"NOT (QueryExample.email = ’james@jimmyg.org’)"

Note: The bracketsre required for queries using th&, | or~ operators because the operators have the
same precedence as other Python operators.

The QueryBuilder is not suitable for all queries. For example it does not currently support the multiple, single or
related joins. If you try to access these columns you will get an error saying the key is not found.

However, all is not lost. Since this is an SQL database after all you can use aoussic.select() method
to get the rowids of the rows you are after and then convert them to objects usingwtflje method of the
appropriate table object.

This situation may change with later versions of the module.

How It Works

EachQueryBuilder object returns a number §luery objects. Thes®uery objects have most of there op-
erators overloaded so that they return correctly encoded strings when compared to valueQureoyhebjects.
Unfortunately it is not possible to usnd, or or not operators so instead tli@uery objects usek, | or~
instead.

It is actually possible to write your where clauses as SQL if you are using an SQL driver. Changing the first line of
our from where = query.firstName == "John" to where = ’Person.firstName="John"
we have:

>>> where = 'Person.firstName="John"™

>>> rows = database['Person’].select(where=where)
>>> print rows

{'Smith’: <Row firstName="John", surname="Smith">}

and we get the same result. In fact the codlimn.firstName == 'John’ from the first example actually
returns the SQL encoded strin@érson.firstName="John") so the two approaches are the same.

There are two advantages of using @eeryBuilder approach rather than writing your own where clauses as
strings:

1. TheQueryBuilder automatiacally handles any data conversion. This is pretty trivial in the example
above as the stringlohn” requires on conversion but if you are doing a query on a date it would be a little
more complicated. Using th@ueryBuilder takes care of it for you.

2. If a new driver was written for theveb.database.object module it may require where clauses in a
different format from SQL strings. If you write your code usingaeryBuilder you can avoid this
complication.

1.5. web.database.object — An object relation mapper built on the web.database and 71
web.form modules

Supported Operators

TheQueryBuilder object supports the following operators:

The three tables below describe the overloaded operators which you can u§ameitiBuilder objects.

Operator | Description
< Less than.
<= Less than or equal to.
== Equal to.
<> Not equal to.
> Greater than.
>= Greater than or equal to.
Other Operators
Operator | Description
+ Add
- Subtract
* Multiply
/ Divide
abs Absolute value of
*x To the power of
% Mod

Logical Operators

Operator | Description
& AND

| OR

- NOT

Supported Functions

Function | Description

AND Equivalent to using the & operator orfauery object.
OR Equivalent to using the — operator orQaiery object.
NOT Equivalent to using the ™ operator orQaiery object.

Full Code Listing
Here is a complete code listing so that you can experiment:
#!/usr/bin/env python
import sys; sys.path.append(’../../../") # show python where the modules are

import web.database, web.database.object

connection = web.database.connect(
adapter="snakesql",
database="database-object-query",
autoCreate = 1,

)

cursor = connection.cursor()

import datetime

72 Chapter 1. Web Modules

person = web.database.object.Table("Person")
person.addColumn(web.database.object.String(hame="firstName"))
person.addColumn(web.database.object.String(hame="surname", unique=True, required=True, key=True))

queryExample = web.database.object.Table('QueryExample’)
queryExample.addColumn(web.database.object.Date(hame="testDate"))
queryExample.addColumn(web.database.object.Integer(name="testIinteger"))
queryExample.addColumn(web.database.object.Integer(name="testNumber"))
gueryExample.addColumn(web.database.object.Email(name="email"))

database = web.database.object.Database()
database.addTable(person)
database.addTable(queryExample)
database.init(cursor)

if not database.tablesExist():
database.createTables()
print "Created Table"

database['Person’].insert(firstName="John", surname="Smith")
database['Person’].insert(firstName="Owen", surname="Jones")

database['QueryExample’].insert(
testDate=datetime.date(2004,7,11),
testinteger = 10,
testNumber = 15,

email = ’james@example.com’
)
where = database['Person’].column[firstName’] == "John"
print where

rows = database[Person’].select(where=where)
print rows

column = database['queryExample’].column

print column['testDate’] == datetime.date(2003,12,12)
print column['testinteger] < 5

print column.AND(column['email’] == ’james@jimmyg.org’, column[testinteger] < 5)
print column.NOT(column[’email’l] == ’james@jimmyg.org’)

print (column['email’l == ’james@jimmyg.org’) & (column[testinteger’] < 5)
print “(column['email’l] == ’james@jimmyg.org’)

connection.close() # Close the connection without saving changes

The output is:

Created Table

(Person.firstName = 'John’)

{'Smith’: <web.database.object.Row from Person table, rowid=1, firstName="John’, surname='Smith’>}
(QueryExample.testDate = '2003-12-12’)

(QueryExample.testinteger < 5)

(QueryExample.email = ’james@jimmyg.org’) AND (QueryExample.testinteger < 5)

NOT (QueryExample.email = ’james@jimmyg.org’)

((QueryExample.email = 'james@jimmyg.org’) AND (QueryExample.testinteger < 5))

(NOT (QueryExample.email = ’james@jimmyg.org’))

You will need to delete the database fitdject-related.db’ each time you run the cose so that it can be recreated
each time.

1.5. web.database.object — An object relation mapper built on the web.database and 73
web.form modules

1.5.6 Creating Forms/Tables

Lets go back to a simple example:

import web.error; web.error.enable()
import web, web.database, web.database.object, os

connection = web.database.connect(type="sqlite", database="object-form.db")
cursor = connection.cursor()

person = web.database.object.Table("Person")
person.addColumn(web.database.object.String(name="firstName", required=True))
person.addColumn(web.database.object.String(hame="surname", required=True))

database = web.database.object.Database()
database.addTable(person)
database.init(cursor)

If we wanted to create a form to display as HTML to add a new person to the table we could use the following
code:

>>> form = database['Person’].form()
>>> print form.html()
<form id="Person" class="pythonweb" action="" method="post" enctype="multipart/for
m-data">
<input type="hidden" name="table" value="Person">
<input type="hidden" name="mode" value="submitAdd">
<table border="0">
<tr>
<td valign="top">Firstname </td>
<td> </td>
<td valign="top"><input type="text" name="Person.firstName" size="40" maxlengt
h="255" value=""></td>
<td valign="top"></td>
</tr>
<tr>
<td valign="top">Surname </td>
<td> </td>
<td valign="top"><input type="text" name="Person.surname" size="40" maxlength=
"255" value=""></td>
<td valign="top"></td>
</tr>
</table>
<ftd></tr>
<tr><td> </td></tr>
<tr><td><input type="submit" value="Submit* name="action"></td></tr>
</table>
</form>

The form object generated prm = database['Person’].form() is a normalweb.form.Form
object and can be used exactly as &wmym object can. See the documentation for tineb.form module for
more information.

Now we need to get the information the user enters into the database. As with all form objects we follow the
following routine once we havefarm object:

74 Chapter 1. Web Modules

form = database['Person’].form() # Continuing from the previous example.

import web
print web.header() # Print the content-type information
if len(web.cgi) > 1: # Assume form submitted

form.populate(web.cgi)
if form.valid():
entry = database['Person’].insert(all=form.dict())
print '<html>%s<p>Go Back</htmI>"%(
'<h1>Entry Added</h1>" + form.frozen(),
os.environ['SCRIPT_NAME’]
)
else:
'<html><h1>Error</h1>%s</htmI>"%(
""" <p>There were some invalid fields.
Please correct them.</p>"" + form.html()
)
else:
entries = "
for row in database['Person’].values():
entries += '%s %s
'%(row[firstName’] ,row['surname’])
print "<html>%s<h4>Entries</h4><p>%s</p></htmI>"%(
'<h1>Enter Data</h1>"+form.htmi(),
entries

And that’s about it. We populate the form and check it is valid exactly as we would with any form object. The
dictionary returned byorm.dict() can be used in thdatabase['Person’].insert() function by

specifying it as thall parameter.

A handy point to note is that if you don’t want the user to be able to add information to all of the form fields you
can use theemove() method of the form to remove a field from the form by name before creating the HTML

version of the form. For example:

>>> form = database['Person’].form()
>>> form.remove(’surname’)
>>> print form.html()
<form id="Person" class="pythonweb" action="" method="post" enctype="multipart/for
m-data">
<table border="0">
<tr><td><table border="0" cellpadding="3" cellspacing="0">
<tr>
<td valign="top">Firstname </td>
<td> </td>
<td valign="top"><input type="text" name="Person.firstName" size="40" maxlengt
h="255" value=""></td>
<td valign="top"></td>
</tr>
</table>
<ftd></tr>
<tr><td> </td></tr>
<tr><td><input type="submit" value="Submit* name="action"></td></tr>
</table>
</form>

Full Code Listing

Here is a complete code listing so that you can experiment:

1.5. web.database.object — An object relation mapper built on the web.database and
web.form modules

75

#!/usr/bin/env python

show python where the modules are
import sys; sys.path.append(’../"); sys.path.append(’../../..I")

import web.error; web.error.enable()
import web, web.database, web.database.object, os

connection = web.database.connect(
adapter="snakesql",
database="database-object-form",
autoCreate = 1,

)

cursor = connection.cursor()

person = web.database.object.Table("Person")
person.add(column="String", name='firstName’, required=True)
person.addColumn(web.database.object.String(hame="surname"))
person.addColumn(
web.database.object.StringSelect(
name="profession”,
options=[None, 'Developer’, 'Web Developer],
displayNoneAs="Not Specified’
)
)
person.add(column="Bool", name='sex’, displayTrueAs="Male’, displayFalseAs="Female’)
database = web.database.object.Database()
database.addTable(person)
database.init(cursor)

if not database.tablesExist():
database.createTables()

form = database['Person’].form()
print web.header() # Print the content-type information
if len(web.cgi) > 1: # Assume form submitted
form.populate(web.cgi)
if form.valid():
entry = database['Person’].insert(all=form.dict())
print '<html>%s<p>Go Back</htmI|>'%(
'<h1>Entry Added</h1>" + form.frozen(),
0s.environ['SCRIPT_NAME’]
)
else:
print ""'<html><h1>Error</h1><p>There were some invalid fields.
Please correct them.</p>%s</htmI>"""%((form.html())
else:
entries = '<table border="0"><tr><td>Firstname</td>’
entries += '<td>Surname</td><td>Profession</td><td>Sex</td></tr>’
for row in database['Person’].values():
entries += '<tr><td>%s</td><td>%s</td><td>%s</td><td>%s</td></tr>"%(
row['firstName’],
row['surname’],
row['profession’],
row['sex’]
)
entries += ’'</table>’
print "<htmI>%s<h4>Entries</h4><p>%s</p></html>"%(
'<h1>Enter Data</h1>+form.html(),
entries

)

connection.commit() # Save the changes

76 Chapter 1. Web Modules

connection.close() # Close the connection

You can test this example by starting the test webserver deripts/iwebserver.py’ and visiting
http://localhost:8080/doc/src/lib/webserver-web-database-object-form.py on your local machine.

1.5.7 Creating Tables by Defining Classes

As well as defining your table by adding columns teeb.database.object. Table object you can define
your own class derived from web.database.object. Table object instead. Here is the same database
defined above but created using classes instead:

import web, web.database, web.database.object

connection = web.database.connect(type="mysql", database="MyDatabase")
cursor = connection.cursor()

class Person(web.database.object.Table):
def setup(self):
self.addColumn(web.database.object.String(name="firstName"))
self.addColumn(web.database.object.String(name="surname"))
self.addMultiple(name="addresses", foreignTable="Address")

class MyDatabase(web.database.object.Database):
def setup(self):
self.addTable(Person())

myDatabase = MyDatabase()
myDatabase.init(cursor)

Whilst this may look more complicated it is a more object oriented solution and allows you to build complex
table objects with increased functionaility by defining your own objects. For example you could override the
_relatedTableName() method of both tables to have your own table name created for multiple join tables.

1.5.8 Other Useful Features

This example below demonstrates some other useful methods.
#!/usr/bin/env python
import sys; sys.path.append(’../../../") # show python where the modules are

import web.database, web.database.object

connection = web.database.connect(
adapter="snakesql",
database="database-object-others",
autoCreate = 1,

)

cursor = connection.cursor()

person = web.database.object.Table("Person")
person.addColumn(web.database.object.String(name="firstName"))
person.addColumn(web.database.object.String(hame="surname"))

database = web.database.object.Database()
database.addTable(person)
database.init(cursor)

if not database.tablesExist():

1.5. web.database.object — An object relation mapper built on the web.database and 77
web.form modules

database.createTables()
print "Created Table"

john = database['Person’].insert(firstName="John", surname="Smith")
owen = database[Person’l.insert(firstName="Owen", surname="Jones")

print database['Person’].max('rowid’)
print database['Person’].max(‘firstName’)
print database['Person’].min(’surname’)

print database.output()
connection.close() # Close the connection without saving changes

The output is:

Created Table

2

Owen

Jones

| Database ’'Database’ |

+ +
T T

| Person |

1.5.9 Class Reference

The following sections describe the full Class reference of the three main classes used in the
web.database.object module.

The Database Object

The Database object is used primarily as a container fbable objects. The function reference is shown
below:

classDatabase ([,name:None])

nameis an arbitrary name for the database used bysth@ andrepr() funcitons. If not specified

nameis set to the class name for the database.

addTable (table
Adds the table objedableto the database

init (cursorn
Initialise the database by associating it with theb.database cursor specified ltursor. Once the
database is initialised you can't add or change the table definitions.

createTables ()
Create all the necessary tables

dropTables ([ignoreErrors:FaIsd)
Remove all tables defined in the databaseighireErrorsis True don't raise an Exception if the
table doesn't already exist.

tablesExist ()
ReturnTrue if all the tables existFalse otherwise.

table (nameg
Return the table object for the table nameine

__getitem __(namg
Return the table object for the table nameine

78 Chapter 1. Web Modules

keys ()
Return a tuple containing the names of the tables in the database

values ()
Return a tuple containing theeb.database.object. Table objects for each of the tables in
the database

items ()
Return a tuple containing 2-tuples(fey, value pairs where th&eyis the table name and thalue
is theweb.database.object. Table object.

dict ([tablestalsd, [rowstaIse])
Return all the tables a dictionary indexed by the table nametablésis True then eachable
object in the dictionary if also made into a dictionary of k&owpairs. Ifrowsis True then each
Rowobject of each table is made into a dictionary of column name : value pairs, except for single,
multiple and related joins columns, since this could result in circular references.

has _key (key)
ReturnsTrue if the database has a talidble , False otherwise

output ([width=80])
Return a string representation of the database and tables in the form of a takidthlis O then no
wrapping is done. Otherwise the table is wrappeditth characters. See thweeb.util.table()
documentation for more information.

cursor
The underlyingveb.database cursor.

name
The name of the database specified byrthmeparameter of the constructor. Used by ¢§) and
repr() funcitons.

Table objects can be obtained fromCatabase object by treating th®atabase object as a dictionary of
Table objects referenced by their names.

For example, if aDatabase object nameddatabase has tables namedPerson and Address
you would access thePerson table with database['Person’] and the Address table with
database['Address’]

>>> database['Person’]
<web.database.object.Table 'Person’>

TheDatabase object also provides setup() method which can be used to setup fields if you want to create
your own custonDatabase object.

The Table Object

classDatabase ([ignoreCreateAndDrop=FaIs]3)
If ignoreCreateAndDrops True then the table is not created or dropped when the database methods
createTables() ordropTables() are called.

addColumn (column)
Add aweb.database.object column object to the table.

addMultiple (name, foreignTable
Add a column named by the strim@meto the table. The column will be used to reference multiple
rows from the table named by the strifgreignTable The foreign table will have a corresponding
addSingle() entry for this table.

addSingle (name, foreignTable
Add a column named by the stringameto the table. The column will contain a reference to a row
in the foreign table named by the strifigreignTable The foreign table will have a corresponding
addMultiple() entry for this table.

addRelated (name, foreignTable
Add a column named by the strintameto the table. The column will contain a reference to any

1.5. web.database.object — An object relation mapper built on the web.database and 79
web.form modules

number of rows in the foreign table named by the stfimgignTable The foreign table will have a
corresponding addRelated() entry for this table and will contain a reference to any number of rows
from this table.

columns ()
Return a tuple of the column names of the table.
keys ()
Return a tuple containing the keys of the rows in the table.
values ()
Return a tuple containing theeb.database.object.Row objects in the table.
items ()
Return a tuple containing 2-tuples ofstr(key), valu@ pairs where thekey is the
web.database.object.Row key and thevalueis theweb.database.object.Row object.

has _key (key)
ReturnsTrue if the table has a row with a keey, False otherwise

dict ([rows:FaIse])
Return the rows in the table as a dictionary indexed by string representations of their keygs i
True then eactlRowobject is made into a dictionary of column name : value pairs, except for single,
multiple and related joins columns, since this could result in circular references.

create ()
Create the tableNote: Usually this is done automatically through tbeateTables() method
of theDatabase class.

drop ()
Drop the tableNote: Usually this is done automatically through ttkepTables() method of the

Database class.

exists ()
ReturnTrue if the table exists in the databa$else otherwise.

rowExists (rowid)
ReturnTrue if the row specified by the integeowid exists in the table-alse otherwise.

columnExists (nameg
ReturnTrue if the columnnameexists in the tableFalse otherwise.

insert ([aII=None], [**params])
Insert a new row to the table. Either specify the values as a dictionary adl th@rameter with the
column names as keys and the values as the column vatusgzecify each column value pair in the
form colName=value, . You must use one of the two methodsdote: all is a reserved word so
there should be no confusion between using the two notations.

delete (rowid)
Delete a row by specifying thewid of the row with therowid parameterWarning: This method
does not delete corresponding rows in foreign tables. If you delete a row there will still be references to
it in other tables if it contains any colums addeddgddMultiple oraddSingle() for example.
These should be deleted manually. XXX is this a bug or a useful feature?

row (rowid)
Return theRowwith therowid specified by theowid parameter.

__getitem __(key)
Return theRowwith the key specified by thekey parameter.Note: Certain objects such as class
objects cannot be used as dictionary keys. All keys are converted to strings us#tig)the function
S0 any object to be used as a key must return a unique value whersits __() is called. This also
means that

select (where[,order:None][,rowids:FaIse])

Select theRowobjects specified by th@hereparameter in the oreder specified by tinder parameter.
If rowidsis True then alist ofrowid s is returned rather than a dictionaryRdéwobjects.

form (]action:"][, method:’post][, stickyData:{}][, enctype:’muItipart/form—data][, submit="Submit’

[, modeDict<"mode’:'mode’, 'table"'table’, ’submode’:’submod@’][, submode:’add])
Return an emptyveb.form Form object to allow data to be added to the table.

80

Chapter 1. Web Modules

max(columr{, rows=’post'])
Returns the highest value oblumnin the current table. Ifowsis True returns a list of rows which
have the maximum value @blumn

min (columr{, rows:’post'])
Returns the lowest value ablumnin the current table. Ifowsis True returns a list of rows which
have the minimum value afolumn

column
Magic attribute which allows you to build SQL where clauses in natural Python language. For exam-
ple:

>>> print database[table’].column[’columnl’] == 23 \
. && database['table’].column['’column2’] < datetime.date(2004,12,04)
column1=23 AND column2<'2004-12-24’

See the "Building Queries” section for more information.

Table rows can be accessed using tbe() method or by using the _getitem __() method as follows.
To return the row with where thkey is surname and you want the row with surnam®mith’ from the
'Person’ table of the database wrappeddigtabase you would do this:

>>> database['Person’]['Smith’]
<web.database.object.Row from 'Person’ Table, rowid=1, firstName='John’, surname='Smith’>

The Row Object

You don't need to creatRowobjects directly. Instead they should be created by using the appropriate methods of
theTable class.

Rowobjects support the standard comparison operatgts,>,>=,==,<> as well as théen() function.

classRow() form (|action="
[, model
Return aweb.form Form object populated with the information from tReow
relate (row)
Relate thisRowto anotheRowobject specified byow. Both Rows must be from tables related with
addRelated() columns and must not alread be related.

unrelate (row)
Unrelate thisRowfrom anotheRowobject specified byow. Both Rows must be from tables related
with addRelated() columns and must already be related.

isRelated (row)
ReturnsTrue if the Rows are already related, otherwise retulRadse .

update ([aII:None],[**params])
Set multiple values of this row in one go. This currently not optimised so it makes an SQL call for
each column set. Set eithall as a dictionary otolumn:values pairs or set*params by using
column=value pairs.

keys ()

Return a tuple containing the column names of the fields.
values ()

Return a tuple containing values of each field for the current row.

items ()
Return a tuple containing 2-tuples pkey, valug pairs where thé&eyis the column name and the
valueis the value of each field for the current row.

has _key (columr)
ReturnsTrue if the row has a column namemlumn False otherwise

1.5. web.database.object — An object relation mapper built on the web.database and 81
web.form modules

dict ()
Return the row as a dictionary of column name : value pairs, except for single, multiple and related
joins columns, since this could result in circular references.

rowid
The rowid of the row

Each column from thé&kowcan be accessed through a dictionary-like interface. For example to print the value
of the column namedfirstName’ from theRowwith rowid 1 from the'Person’ table in the database
database you would use:

>>> print database['Person’][1][firstName’]
John

1.5.10 Future

This is a list of things currently not included in the module but which may be of use later on:

e Support for functions such as LIKE, BETWEEN, NOW etc.
e Specify different columns for automatic RSS generation
e Build many-to-many support into the query builder

e Deal with " being interpreted as None

1.6 web.error — Enhanced error handling based on the cgitb
module

Theweb.error module provides enhanced functionality similar to ¢igitb module distributed with Python.

If an exception is raised thweb.error module can catch the error and produce a customised display of the
error, the surrounding code and the values of variables in the line which caused the error. It also provides the
ability or log errors to a file in various formats.

Using the module you can also provide your own error handling. The example at the end shows you how to create
a custom error handler to email error reports to a devloper.

See Also:

cgitb Module Documentation
(http://www.python.org/doc/current/lib/module-cgitb.html)
Find out more about thegitb module on which this module is based.

1.6.1 Basic Usage

The easiest way of catching and handling errors in Python is to trye.a except... block around
all your code as shown below:

try:

raise Exception('This error will be caught’)
except:

print "An error occured"

If you want to produce more detailed error reports you can do something like this:

82 Chapter 1. Web Modules

try:

raise Exception('This error will be caught and nicely displayed’)
except:

import web.error

print web.error.info(output="traceback’, format="text’)

This will produce a text format output of the traceback information.

If no parameters are specified in theb.error.info() function the result returned is a full HTML debug
representation of the error similar to that produced byctgiith module.

Often a more convenient way to catch errors is by usingahb.error.handle() method. If an error is
raised it will be automatically handled. The default behaviour is to pridbatent-type header followed by
HTML information about the error suitable for display in a web browser. This can be done as follows:

import web.error
web.error.handle()

raise Exception('This error will be caught and nicely displayed for a web browser’)

This will produce a full HTML page giving the debug traceback of the error.

Python allows you to put both lines of code on one line to make things look neater if yoy us@ia some of the
following samples the error handling initialising will look like this:

import web.error; web.error.handle()

Agian a full HTML page giving the tracback of the error is displayed together with the HTTP header for display in

a browser. You can specify the information displayed byviled.error.handle() function by passing any
parameters that can be passed towled.error.info() function, but if you do this you should also specify

the handler you wish to use. The example below prints a text representation of the code which caused the error to
a web browser:

import web.error
web.error.handle(

handler = 'browser’,
output = ’'code’,
format = 'text’,

Finally, you may wish to use a different error handler, for example you may wish to log the error to a file rather
than displaying it. You can specify thendlerparameter as a string representing the name of the handler you wish
to use. Any extra parameters the handler takes can also be specifiechamttie() function. In this example
filenameis a parameter used by thie handler andutputandformatare used by theveb.error.info()

function to create a representation of the error:

1.6. web.error — Enhanced error handling based on the cgitb module 83

import web.error
web.error.handle(

handler = ffile’,
filename = ‘test.html’,
output = 'traceback’,
format = ’text’,

)

raise Exception('This error will be caught appended to the test.html file as a text format traceback’)

This time the error will be logged to the fileest.ntml” and no output will be printed.

The next sections describe the options ford¢ner() andinfo() functions and the various error handlers
you can use with théandle() function provided in theaveb.error.handler module. The final section
describes how you can create custom error handlers for even more advanced error handling.

There is a section in the documentation for theb.wsgi module describing how error handling could be per-
formed in a Web Server Gateway Interface application.

1.6.2 Using The info() Function

Theweb.error.info() function returns a representation of the error raised according to the options specified.
If no options are specified an HTML debug representation is returned.

The parameters used in theb.error.info() can also be used in theeb.error.handle() function to
describe how the handled error should be displayed.

Below is the API reference for theeb.error.info()

web.error.info ([error], [context=5])
Return a string representing the error according to parameters specified.

output="debugThe output format for the exception. Can’braceback’ for atracebacKcode’ fora
code listing ordebug’ for code and traceback listing suitable for script debugging. If not specified
info() returns &rrorinformation object.

format="html’ The default output format. Can currently bext” or’html’

errorAn exception tuple as retured lsys.exc _info() . If not specifiedsys.exc _info() (which
contains the current traceback information) is used.

contexiThe default number of lines of code to display in traceback information. The def&ult is

1.6.3 Using The handler() Function

If you want more control over the format of the error messages you can use one of the handlers in
web.error.handler

Theweb.error.handle() function has the following parameters:

handle ([handler], [**params])
handlershould be a string representing the name of a default handler to use or a custom handler function.
The parameters specified pgramsare a combination of parameters used by the handler function chosen
and any of the parametessitput formatandcontextused to specify how the error information is displayed.

For example:

84 Chapter 1. Web Modules

web.error.handle(

handler = 'file’,
filename = ’test.html’,
output = ’traceback’,
format = ’text’

)

This would append a text format traceback of the error to trse.html’ file.

The default value fohandleris 'browser’ and the default display options produce a full HTML debug
report so most of the time the following code is sufficient to add at the top of a CGl script:

import web.error; web.error.handle()

In the example below we specifgrmatas’text’ handler to ouput a text representation of the error:

import web.error; web.error.handle(handler="browser’, output="debug’, format="text’)
This is line 2

This is line 3

This is line 4

This is line 5

raise Exception('This error will be caught and nicely displayed’)

This is line 7

This is line 8

This is line 9

This is line 10

This produces the output:

Content-type: text/plain

exceptions.Exception
Python 2.2.3 : C:\WINDOWS\Python22\pythonw.exe
Tue Jan 18 20:43:21 2005

A problem occurred in a Python script. Here is the sequence of
function calls leading up to the error, in the order they occurred.

C:\Work\PythonWeb.org\CVS Branches\Web Modules 0.5\test.py
4 # This is line 4
5 # This is line 5
6 raise Exception('This error will be caught and nicely displayed’)
7 # This is line 7
8 # This is line 8

Exception undefined

exceptions.Exception: This error will be caught and nicely displayed
args = (‘This error will be caught and nicely displayed’,)

The above is a description of an error in a Python program. Here is
the original traceback:

Traceback (most recent call last):
File "test.py”, line 6, in ?
raise Exception('This error will be caught and nicely displayed’)
Exception: This error will be caught and nicely displayed

Note that the handler printe@ontent-type ~ HTTP header. This is so that the output could be displayed in a
web browser. If this header wasn'’t displayed you would seltamnal Server Error 500 message in
the browser.

1.6. web.error — Enhanced error handling based on the cgitb module 85

If you are not writing a web application you might choose to uséyttiat’ handler instead of therowser’
handler so that th€ontent-type ~ HTTP header is not displayed.

If you want to control the number of lines of code displayed in the error output you can seirttextparameter.
This is the number of lines to be displayed around each line of the traceback. In the example below we set
context=3 to reduce the amount of output:

import web.error; web.error.handle(handler="print’, output="debug’, format="text’, context=3)

The output is:

exceptions.Exception
Python 2.2.3 : C:\WINDOWS\Python22\pythonw.exe
Tue Jan 18 20:45:02 2005

A problem occurred in a Python script. Here is the sequence of
function calls leading up to the error, in the order they occurred.

C:\Work\PythonWeb.org\CVS Branches\Web Modules 0.5\test.py
5 # This is line 5
6 raise Exception('This error will be caught and nicely displayed’)
7 # This is line 7

Exception undefined

exceptions.Exception: This error will be caught and nicely displayed
args = ('This error will be caught and nicely displayed’,)

The above is a description of an error in a Python program. Here is
the original traceback:

Traceback (most recent call last):
File "test.py", line 6, in ?
raise Exception('This error will be caught and nicely displayed’)
Exception: This error will be caught and nicely displayed

Note that there are fewer lines of code in the code display of the traceback than before.

If infois not specified in théandler() function, information can be produced in any of the formats supported
byinfo() simply by passing thhandler() function the parameters you would normally passifo() and

not specifying thénfo parameter. The exception to this rule itthandler() does not accept treutput="class’
option as this does not produce text output.

There are three built-in handlers each of which handle the error information generated in different ways.

"print’ (web.error.handler.send()) Simply prints the error information to the standard output.

‘browser’ (web.error.handler.browser()) Sends the error information to the standard output af-
ter first sending an HTTRontent-type header for display in a web browser. You can over-ride the
default header to be sent by specifyihgader For exampleheader="text/plain’ would send a
Content-type: text/plain HTTP header.

file’ (web.error.handler file()) Writes the error information to the file specified filgname

If no filenameis specified, the error information is written to a file in the forrB@05-01-18.log . If
appendis specifiedFalse the file is overwritten, the default ifrue meaning that error information is
appended to the file. Hir is specified, files are logged to that directory, the default is to log to the script
directory. Warning: It is good practice, but not enforced, to spedify otherwise it is possible a logfile
will overwrite a file of the same name.

If messagds specified that message is sent to the standard output. Usually you shoulg:sssige
to be something likeweb.header('text/plain’)+'An error occured and has been

86 Chapter 1. Web Modules

logged.” . Obviously you would not need to specifyeb.header('text/plain’) if you are not
outputting the error message to a web browser.

All of the handlers are used in the same way.

1.6.4 Using The error() Function

Alternatively you can create derrorinformation object to display the error information:
try:
raise Exception('This error will be caught and nicely displayed’)
except:

import web.error
errorinfo = web.error.error()
print error.textException()

This would aproduce the same output described in the previous example.

The web.error.error() function returns arkrrorinformation object which can be used to format
exception tuples in a variety of useful ways. Below is the API reference foxdliieerror.error() function
and thelnformation objects returned.
web.error.error ([error:sys.exc;info()], [context:S])

Return arErrorinformation object representing the error.

errorThe traceback tuple you wish to display information for. If not specified the last exception is used.

contexiThe default number of lines of code to display in traceback information. The def&ult is
classErrorinformation

Error Information objects have the following attributes:

error
The error tuple specified in thefo() ~ function orsys.exc _info() if no error was specified.

format
The default output format of the methods. Can currentlitdsd’ or ’html’

pythonVersion
A string representing the version of Python being used.

errorType
The Exception raised

errorValue
The error message.

date
A string representing the date and time thiormation object was createdNote: This may not
be the time the error occured.

context
The number of lines of code to display in error information.

Error Information objects have the following methods for displaying error informatime: Python
2.1 and below do not have tiegitb module and so have slightly different implementations otttmal()

andtext() methods so the output of those methods may be different to the output generated using Python

2.2 and above.

ouput (output,[format], [error], [context])
outputcan betraceback’ for a tracebackicode’ for a code listing ofdebug’ for code and

traceback listing suitable for script debugging. The method returns the result of calling the respective

method below.

1.6. web.error — Enhanced error handling based on the cgitb module 87

traceback ([format], [error])
Returns the traceback of the error in the format specifietbbmatwhich can currently bé&ext’
or’html" . If not specifiedformat takes the value oformat . error should be an error tuple as
returned bysys.exc _info() . If not specifiederror is used.

code ([format], [error], [contexﬂ)
Returns relevant lines of code and variables from the traceback in the format specffiechbtwhich
can currently bétext’ or’html’” . If not specifiedformat takes the value oformat . context
is the number of lines of code to display at each stage in the traceback information. If not specified
context is used.error should be an error tuple as returneddyg.exc _info() . If not specified
error is used.

debug ([format], [error], [context])
Returns the traceback of the error in the format specifieidbgattogether with relevant lines of code
and variablesformatcan currently b&ext” or’html’ . If not specifiedormattakes the value of
format . contextis the number of lines of code to display at each stage in the traceback information.
If not specifiedcontext is used.error should be an error tuple as returneddyg.exc _info()
If not specifiederror is used.

1.6.5 Creating Custom Handlers

If the built-in handlers don’t provide the level of cutomisation you require you can create a custom handler.

Handlers are simply callables which take the info string to output as the first parameter and any parameters passed
to thehandle() function as subsequent parameters.

For example:

>>> def myHandler(info, message):
print message
>>>
>>> import web.error; web.error.handle(myHandler, message="An error occured")
>>> raise Exception('This is an error’)
An error occured

This example isn’t too useful as it always displays the same output. To make it more useful

>>> def myHandler(info, message):
print message
print info
>>>
>>> import web.error
>>> web.error.handle(
myHandler,
format="text’,
output="traceback’,
message="An error occured’,
)
>>> raise Exception('This is an error’)
An error occured
exceptions.Exception: This is an error
args = ('This is an error’,)

outputis used to obtain the error information from timo() function which is then sent as the first parameter
to themyHandler function. messagés also sent to thenyHandler function which prints the error message.

This structure allows building very powerful handlers.

88 Chapter 1. Web Modules

1.6.6 Example

Take a look at the example below demonstrating a handler which emails information to a developer:
#!/usr/bin/env python

show python where the web modules are
import sys; sys.path.append(’../’); sys.path.append(’../../..I")

import web.error; web.error.handle()
raise Exception('This is a test exception’)

Warning: If you run this example please make sure you replace the email addresses with your own email address
in. You may need to change the path of sendmail or use an SMTP server instead. ®eb.thail module
documentation for help with this.

Note: If an exception occurs in your custom error handling function it may be difficult to track down. You can
put your code inside &y except block and make sure some sensible output is returned in the event of an
Exception being raised.

1.7 web.environment — Tools for seting up an environment

Theweb.environment module provides a single function namedver() used to obtain an environment
driver to setup or remove an environment.

In the context of a PythonWeb application the environment describes the structures in place in the storage medium
and mainly relates to theeb.auth andweb.session modules.

Environments are best explained by an example. If you are using a database environment it means that you will
be storing session and user information in a series of database tables. Before you can start using these tables they
need to be created. Theeb.environment module provides tools to setup the database tables needed. If you
were using a file environment, you may need to create the necessary directory structure.

Within an environment, applications can share session and user tables and access each other’s information. For
example if you had two applications namgdestbook andnews, you might want a user namgames to

be able to access both of them without having to sign in to both applications. guéstbook andnews
applications are both in the same environment this is easy since they both use the same session ID and user
information.

Each environment has a name. In the context of a database environment the environment name is simply a string
which is used to prepend all the environment tables so that multiple environments (with different names) can exist
in the same database. This means that you can run all the PythonWeb environments you want to from the same
database which is handy if your shared web hosting agreement only gives you access to one database. In the
context of a file environment, the environment name might be the name of the directory holding the data files.

1.7.1 Example

In order to use thaveb.session andweb.auth modules the environment must be setup correctly. You can
create the necessary environment usingib.environment ~ module’sdriver() function as shown below:

#!/usr/bin/env python

show python where the modules are
import sys; sys.path.append(’../"); sys.path.append(’../../..I")

Setup a database connection

import web.database

connection = web.database.connect(
adapter="snakesq!",
database="environment",

1.7. web.environment — Tools for seting up an environment 89

autoCreate = 1,

)

cursor = connection.cursor()

import web.environment

driver = web.environment.driver(
name="testenv’,
storage="database’,
CUrsor=cursor,

)

if not driver.completeEnvironment():
driver.removeEnvironment(ignoreErrors=True)
driver.createEnvironment()
print "Environment created"

else:
print "Environment already complete"

connection.commit() # Save changes
connection.close() # Close the connection

If none or only some of the tables are present we drop all the existing tables (ignoring errors produced because
of missing tables) losing any information they contain and recreate all the tables. We also need to commit our
changes to the database so that they are saved emimgction.commit()

1.7.2 API Reference

The EnvironmentDriver object is used to manipulate the environment. It is obtained frondtiver()
method of theveb.environment module.

driver (storage,[name:"], [**params])
Used to return aiEnvironmentDriver object.

storagd he storage driver to be used in the environment. Currently can oritlabebase’
nameThe name of the environment (used to prepend database tabtesifeis 'database’)

**paramsAny other parameters needed by tBevironmentDriver object. For example i§torageis
‘database’ then cursor should also be specified as a valid cursor to the database in which the
environment exists.

classEnvironmentDriver
EnvironmentDriver objects have the following methods:

completeEnvironment ()
ReturnsTrue if all auth and session tables exiBalse otherwise. XXX Does not check the structure
of the tables.

createEnvironment 0
Creates all the auth and session tables, raising an error if any already exist.

removeEnvironment ([ignoreErrors:Falsd)
Removes all the auth and session tables, raising an error if any don't existigniesErrorsis True .

1.8 web.form — Construction of persistant forms/wizards for HTML
interfaces

Theweb.form module a series of classes and functions for generating and managing persistant HTML forms.
As well as basic fields such agut or select fields, the module provides fields for dates, email addresses,
URLs and more. It also supports fields which return Python types, for example the Integer Select field or the Date
field.

20 Chapter 1. Web Modules

Theweb.form module also provides a mechanism for automatically handling invalid data and requesting more
information from the user.

1.8.1 Introduction

Theweb.form module has three modules containg different types of fielah.form.field.basic pro-
vides the standard HTML fields such egput boxes orCheckBoxGroup s. web.form.field.typed
provides fields which return typed data such as Dateswaetriform.field.extra provides fields such as

email and URL.

The code below will create dnteger field:

>>> import web.form, web.form.field.basic as field
>>> input = field.Input(hname="box’, default="Default Text’,
description="Input Box:’, size=14, maxlength=25)
>>> print input.html()
<input type="text" name="box" size="14" maxlength="25" value="Default Text">

This on its own doesn’t seem overly useful but when combined witielaform.Form it becomes much more
useful. Following on from the previous example:

>>> exampleForm = web.form.Form(name="form’, action="forms.py’, method="get’)
>>> exampleForm.addField(input)
>>> exampleForm.addAction(’'Submit’)
>>> print exampleForm.html()
<table border="0">
<tr><td><table border="0" cellpadding="3" cellspacing="0">
<tr>
<td valign="top">Input Box: </td>
<td> </td>
<td valign="top"><input type="text" name="input" size="14" maxlength="25" valu
e="Default Text"></td>
<td valign="top"></td>
</tr>
</table>
<ftd></tr>

</table>
</form>

In this case a properly formatted form is produced with labels for the fields.

Now in order for this to be useful a mechanism is needed for displaying the form data to the user, validating it,
re-displaying it with an error message if it is invalid and then finally accessing the data.

To populate the form with data we use thweb.cgi object which acts like a dictionary of submitted CGI vari-
ables. If the form is submitted then at least one cgi variable will be avaiblelsa(ifveb.cgi)>0 then we
know someone is trying to submit form data.

>>> if len(web.cgi) > O:
exampleForm.populate(web.cgi)

The form will now be populated with the information from theb.cgi object. The values submitted to each
field may not be of the appropriate types so in order to make sure the information is valid we eallidte
method of the form to validate each field.

1.8. web.form — Construction of persistant forms/wizards for HTML interfaces 91

Again, following on from the previous example:

>>> if exampleForm.valid():
print "It validated"

>>> else:
print exampleForm.html()

If the information entered into the form is not vakckampleForm.html() will return a form with the error
marked on so that the user can change the field and resubmit the form. Once every field in the form is valid then
we can go ahead and access the fields varaibles by their names like this:

>>> exampleForm['box’]
<Input Class. Name='bhox'>
>>> exampleForm[’box’].value
'‘Default Text’

If a valid value had been submitted thexampleForm[’box’].value would have returned that value rather
than the default.

1.8.2 Form Objects

classForm([name:’form’][, action="][method:'get’][, stickyData:][, enctype:"][, populate:Noné[,
incIudeName=NonAz)
Form objects have the following class structure and methods:
valid ()
tries to vaildate each field. If any of them contain invalid values rettiase otherwise returns
True

populate (form)
Populates each field from the valuefofm. form should be aveb.cgi object.

addField (field)
Add the field objecfield to the form.

addAction (name¢

Add a Submit button nametameto the form. XXX May remove this function in future versions.
field (namg

Returns the field object namedme
__getitem __(nam@

Returns the field object namedme
remove (namg

Remove the field nameathmefrom the form
has _key (nameg

ReturnsTrue if the form has a field namegiame False otherwise
values ()

Return a tuple containing the values of the form fields in the order they were added. The values of the
field can be accessed from thalue attribute of each item in the tuple.

keys ()

Return a tuple containing the names of the form fields in the order they were added
dict ()

Return a dictionary containing the names and values of the fielksyagalue pairs
items ()

Return a tuple containing 2-tuples(dkey, valug pairs where thé&eyis the field name and thealue
is the field object.

92 Chapter 1. Web Modules

html ()
Return an HTML representation of the form

hidden ()
Return the form as hidden fields

frozen ([action:Noné)
Return the form as HTML with the values displayed as text and hidden fields instead of the fields. If
actionis specified a Submit button with the value specifiecab§ionis added to the form

templateDict ()
Return the form as a dictionary suitable for use in a template.

The keys include: 'name’ /action’ /'method’ /enctype' /fields’ ,actions’ and
'stickyData’ . 'fields’ is the key to an array dictionarys containg field information with
the keys:'name’ error’ ,description’ Jvalue’ and’html’ . 'stickyData’ is the

stickyData as hidden fields.

1.8.3 Creating Custom Forms

Rather than creating web.form.Form object and adding fields, it is also possible to define a custom form
object. This has the advantage that you can easily override the default behaviouwebtfem.Form object

so that your form will display information in a different way. More information on customigial.form.Form

objects is given later on. The code below creates exactly the same form object as we created in the example above.

>>> class ExampleForm(web.form.Form):
def setup(self):
self.addField(
field.Input(

name="box’,
default="Default Text’,
description="lnput Box:’,
size=14, maxlength=25

)
self.addAction('Submit’)

>>> exampleForm = ExampleForm(name="form’, action="forms.py’, method="get’)

1.8.4 Fields

This section provides the full class reference forwteb.form module field classes.

The fields in theweb.form.field.basic are all designed to provide a functional interface to manipulate
standard HTML form fields. Fields in theeb.form.field.typed are used to return a typed object such
as an Integer or a Date. Fields in tveb.form.field.extra provide extra functionality. For example the
Email field checks that the string entered could be a valid email address.

All the fields have the parameters, methods and attributes specifiedkietde class as well as the parameters,
methods and attributes documented in their own section. Figld should not be used in code. It is simply
designed to be a base class for all the other classes to be derived from.

web.form.field.basic — Various fields for use with web.form

classField (name[default:"],[description:"][,error:“][,required:FaIsei[,requiredError:’PIease enter

a value’])
basic.Field is an abstract class from which other classes are derived.

namerhe name of the field.

1.8. web.form — Construction of persistant forms/wizards for HTML interfaces 93

defaultThe default value of the field
descriptiorA description of the field for use as part of a form
errorThe error message to initialise the field with

requiredf True avalue must be entered. A striig is not a valid value. Ifequired=True defaultcannot
be”

requiredErrorA string containing the error to display if no value is entered.

populate (values
Populates the field fromwaeb.cgi object.

valuesTheweb.cgi object to use.

valid ([value:Nond)
Populates the field fromwaeb.cgi object.

valueThe value to validate. Ifalue=None then the current value of the field if validated instead.
ReturnsTrue or False .

html ()
Returns the object as an HTML string

frozen ()
Returns a string representation of the field

hidden ()
Returns the field as a hidden field

error ()
Returns the contents of the error string

setError (error)
Set the error of the field terror

description ()
Returns the contents of the description string

name()

Returns the name of the field

value
The value of the field

classinput (name[,default:“][,description:“][,error="][,required:Falsd[,srequiredError="Please entegize
avalue’ ,I;,size:40 ,maxlength=Nong¢)
Size of the filed. The number of characters that are displayed
maxlengthrhe maximum number of characters which can be entered into the Kelde means there is
no limit.

classPassword (name{,default:“][,descri tion:"][,error:" [,required:FaIse][,requiredError:’PIease size
enter avalue], ,size:401f,maxlength:Non)
Size of the filed. The number of characters that are displayed

maxlengthrhe maximum number of characters which can be entered into the Kelde means there is
no limit.

classHidden (name[default:"] ,[description:"][,error="][,required:Falsd[,srequiredError="Please en-
ter avalue’|)
Note: Although you can, it makes little sense to set or read an error on a hidden field.

classCheckbox (name{,default:“][,description:"][,error:"][,required:FaIse][,requiredError:’PIease default

enter a valuel)
The default can only b®n’ or

classSubmit (name[,default:"][,description:“][,error:“][,required:Falsd[,requiredError:’PIease en-

tera value’])
Creates a submit button. Same methods and attributessis Field

classReset (name[,default:“][,description:“][,error:”][,required:Falsd[,requiredErrorz’PIease enter

avalue’l)
Creates a reset button. Same methods and attributessasField

94 Chapter 1. Web Modules

classTextArea (name[default-”][description=][error—"][required= Falsd[requiredError="Please cols
enteravalue ,cols= Noneﬂ ,rows=Non)
The number of columns in the fie (The number of characters that are displayed in eacNoo).
means not set.

rowsThe number of rows of text on display before the box has to sd¥alhe means not set.

classFile (name[,default:"],[description:“][,error:”][,required:Falsd[,requiredError:’PIease enter a

value'])
For file uploads.
Note: If a web.form.Form object has aveb.form.field.basic.File field, themethodparame-
ter should be set t*OST’ and theenctypeshould be set tomultipart/form-data’ for file uploads
to work.
classSelect (name,option[sdefault:"][,description:”] .error="][,required:FaIse options
,requiredError="Please choose an optiofy
Should be a list or tuple divalue, label] pairs. Eachvalue orlabel should be a string.

Eachvalue should be unique.
defaultA string equal to thevalue of the default option.

classRadioGroup (name,optionE.default=”][,description=”] ,error="][,required=FaIse options
,requiredError="Please choose an optioff ,align="horiz’ L,cols:4])
Should be a list or tuple divalue, label] pairs. Eachvalue orlabel should be a string.

Eachvalue should be unique.
defaultA string equal to thevalue of the default option.

alignCan behoriz’ ,’'vert’ or’table’
classMenu(name,option[sdefault:[]][,description:”][,error="][,required=False options
,requiredError="Please choose at least one optigh’
Should be a list or tuple divalue, label] pairs. Eachvalue orlabel should be a string.

Eachvalue should be unique.
defaultA list or tuple of strings for all the default values to be selected.
value

The value of the field returned as a List.

classCheckBoxGroup (name, optlonEdefauIt []][description=][error="][required=False options
,srequiredError="Please choose at least one opt@h align="vert’][cols=4

Should be a list or tuple divalue, label] pairs. Eachvalue orlabel should be a string.
Eachvalue should be unique.

defaultA list or tuple of strings for all the default values to be selected.

alignCan behoriz’ ,’'vert’ or’table’
coldf align=table’, colsshould be an integer specifying the number of columns in the table.
value

The value of the field returned as a List.

web.form.field.typed — Typed fields for use with web.form and web.database.object

This module provides fields to support the following data types:

Type Description

Char A character field taking strings of length 1

String A string field taking strings of up to 255 characters

Text A text field for storing large amounts of text (up to 16k characters)

Integer An integer field taking any integer that is a valid Python integer (lmtitong)

Float A float field taking Python float values

Date A date field. Takes values in the form of pythdatetime objects. Only stores days, months and years, any
Time A time field. Takes values in the form of pythdatetime objects. Only stores hours, minutes and seconds
DateTime | A datetime field. Takes values in the form of pythdatetime objects. Only stores days, months, years, ho

1.8. web.form — Construction of persistant forms/wizards for HTML interfaces 95

Note: TheseField objects correspond to the fields used by theb.database module. There is a
reason for this; theColumn objects in theweb.database.object module are each derived from a
web.form.field.typed Field . This means that columns fromveeb.database.object.Row are
also valid form fields. This is used in tleeb.database.object classes to automatically generate and vali-
date forms which can be used seamlessly and easily submit and edit data in a database.

Each of the data types listed below has three types of field specified:

Free Allows the user to specify any value
Select Allows the user to choose one value from a number of values specified

CheckBoxGroup Allows the user to choose more than one option

The typed field classes have the same interface as their basic equivalents except that:

1. The Select and CheckBoxGroup classes take lists of their respective data types rathaluthatabel
pairs.

2. The fields return their repsective Python object (or list of objects) when.ttadire attribute is called.

All the fields can either take their respective data type or the Wdare as possible values for the field. The only
complications are thaveb.form.field.typed.String , web.form.field.typed.Text and class-
web.form.field.typed.Char objects.

If someone enters no information into a String field there is a choice of whether to treat this as a nufl sting
a NULL valueNone. To specify which behaviour you would like thveeb.form.field.typed.String

object accepts the parametareatNullStringAsNonewhich takes a default value ofTrue . The
web.form.field.typed.Char andweb.form.field.typed.Text fields also accept theeatNull-
StringAsNongarameter.

Theweb.form.field.typed.Integer field also takes the parametengnandmaxto specify the minimum
and maximum values and the parametaisError andmaxErrorto specify the errors to display if the values are
outside the specified minimum and maximum.

One more complication is how to displ&one values in thewveb.form.field.typed.StringSelect

and classweb.form.field.typed.CharSelect objects. If you choose the $ong’ to display it how do you
distinguishNone from’'None’ ? Any value you choose could be confused with another string. The solution is to
set a string value to dispalyone that isn’t another value in th@ptions You can set this using thaisplayNoneAs
parameterNone values for the other Select fields are just displayed as

web.form.field.extra — Extra fields for use with web.form

This module provides two classedJRL and Email . Both these classes behave exactly the same as the
web.form.field.typed.String class except that they only accept as values strings that are URLS or
Emails respectively.

For example:

>>> import web.form.field.extra as field

>>> email = field.Email(name="emailField’)

>>> print email.html()

<input type="text" name="emailField" value=""> <small>eg. james@example.com</small>
>>> email.value = ’this is not an email address’

>>> email.valid()

0

>>> print email.error()

Please enter a valid email address. eg. james@example.com
>>> email.setError(”)

>>> email.value = 'james@example.com’

>>> email.valid()

1

96 Chapter 1. Web Modules

1.8.5 Basic Fields Example

As an example showing the internal workings of the the form module.

#!/usr/bin/env python

"Forms example."

import sys, re, 0s
sys.path.append(’../")
sys.path.append(’../../")

import web.error; web.error.handle()
import web, web.form, web.form.field.basic, web.util

class ExampleForm(web.form.Form):

def setup(self):

self.addField(web.form.field.basic.Input(input’, 'Default Text’, 'Input Box:’, size=14, maxlength=25))
self.addField(web.form.field.basic.Password('password’, 'Default Text’, 'Password Field:’,size=14, maxlength=:
self.addField(web.form.field.basic.Hidden(’hiddenfield’, 'Default Text',’'Hidden Field’)) # XXX
self.addField(web.form.field.basic.CheckBox('checkbox’, 'DefaultValue’, 'Checkbox:"))
self.addField(web.form.field.basic.Button('button’, 'Button Label’, 'Button:’))

self.addField(web.form.field.basic. TextArea('textarea’, 'Text Area\n-----\nText’, 'Text Area:’))
self.addField(web.form.field.basic.RadioGroup('radiogroup’, [('1’,’one’),(’2’,'tw0’),('3",'three’)] , '3’ , 'Radio Grou
self.addField(web.form.field.basic.Menu('menu’, [('1’,one’),('2’,'tw0’),('3",'three’)], ['2',’3’], 'Menu’, size=3, requir
self.addField(web.form.field.basic.Select('select’, [('1’,’'one’),('2,'tw0’),('3’,'three’)], '3’, 'Select’, required=True))
self.addField(web.form.field.basic.CheckBoxGroup('checkboxgroup’, [('1',’one’),('2’,'two"),('3’,'three’)], ['1','’2"], 'Cl
self.addField(web.form.field.basic.Reset(reset’, 'Reset’, 'Reset Button:’))
self.addField(web.form.field.basic.Submit(’'submit’, ’Submit’, *'Submit Button (normally not used):’))

The preffered way of adding submit buttons is as actions so Submit buttons are normally not used.
self.addAction('Validate This Form’)

def valid(self):

if web.form.Form.valid(self):
validates = True
if self.get(input’).value == 'Default Text"
self.get(input’).setError("ERROR: You must change the text in the input box.")
validates = False
return validates
else:
return False

Print the HTTP Header
print web.header('text/html’)

Create a form

exampleForm = ExampleForm(‘form’, os.environSCRIPT_NAME’], 'get’)

if len(web.cgi) > 0: # Form submitted
Populate form with the values from get.

Prepare form values:
values = {}

for k in web.cgi.keys():

values[k] = [k,str(web.cgi[K])]

if exampleForm.has_key(K):
values[k].append(exampleForm[K].value)
values|k].append(exampleForm[K].error())

1.8. web.form

— Construction of persistant forms/wizards for HTML interfaces 97

exampleForm.populate(web.cgi)

for k in web.cgi.keys():

if exampleForm.has_key(k):
values|[k].append(exampleForm[k].value)
values|k].append(exampleForm[K].error())

if exampleForm.valid():

for k in web.cgi.keys():
if exampleForm.has_key(k):
values[k].append(exampleForm[k].value)
values[k].append(exampleForm[K].error())

valueText = "

for k in exampleForm.keys():
if web.cgi.has_key(k):

valueText
valueText
valueText
valueText
valueText
valueText
valueText
valueText
valueText

+= '%s
"%values[k][0]

+= ’'<table border="0">'

+= '<tr><td>Create</td><td>%s</td></tr>'%web.encode(repr(values[K][2]))
+= '<tr><td>Error</td><td>%s</td></tr>"%web.encode(repr(values[k][3]))
+= '<tr><td>Populate</td><td>%s</td></tr>'%web.encode(repr(values[k][4]))
+= '<tr><td>Error</td><td>%s</td></tr>'%web.encode(repr(values[k][5]))
+= '<tr><td>Validate</td><td>%s</td></tr>"%web.encode(repr(values[k][6]))
+= '<tr><td>Error</td><td>%s</td></tr>'"%web.encode(repr(values[K][7]))
+= ’'</table>

’

print "<html><head><title>Form Test - Validated</titte></head><body>\n<h1>It Validated!</h1>%s\n<hr>\n<h:

else:

for k in web.cgi.keys():
if exampleForm.has_key(K):
values[k].append(exampleForm[k].value)
values[k].append(exampleForm[K].error())

valueText = "

for k in exampleForm.keys():
if web.cgi.has_key(k):

valueText
valueText
valueText
valueText
valueText
valueText
valueText
valueText
valueText

+= '%s
'%values[k][0]

+= ’<table border="0">’

+= '<tr><td>Create</td><td>%s</td></tr>'%web.encode(repr(values[k][2]))
+= '<tr><td>Error</td><td>%s</td></tr>'%web.encode(repr(values[k][3]))
+= '<tr><td>Populate</td><td>%s</td></tr>'%web.encode(repr(values[k][4]))
+= '<tr><td>Error</td><td>%s</td></tr>'"%web.encode(repr(values[k][5]))
+= ‘<tr><td>Validate</td><td>%s</td></tr>'%web.encode(repr(values[k][6]))
+= '<tr><td>Error</td><td>%s</td></tr>'%web.encode(repr(values[k][7]))
+= ’'</table>

’

print "<html><head><title>Form Test - Errors</titte></head><body>\n<hl1>Please Check Entries</h1>%s\n<h

else:

print "<html><head><title>Form Test</title></head><body>\n<h1>Welcome Please Fill In The Form</h1>%s\n<hr

You can test this example by starting the test webserver duripts/iwebserver.py’ and visiting
http://localhost:8080/doc/src/lib/webserver-web-form.py on your local machine.

1.8.6 Typed Fields Example

As an example showing the how to use the typed fields, not the uderad values.

#!/usr/bin/env python
"Forms example."
import sys, re, 0s

sys.path.append(../")
sys.path.append(’../../")

import web.error; web.error.handle(handler="browser’, output="debug’, format="html’)
import web, web.form, web.form.field.basic, web.util

98

Chapter 1. Web Modules

import web.form.field.typed

class ExampleForm(web.form.Form):

def setup(self):

self.addField(web.form.field.basic.Input(input’, 'Default Text’, ’'Input Box:’, size=14, maxlength=25))
self.addField(web.form.field.typed.String('string’, default=None, treatNullStringAsNone=False))
self.addField(web.form.field.typed.String('string None’, default=None, treatNullStringAsNone=True))
self.addField(web.form.field.typed.Bool(’bool’, required=True))
self.addField(web.form.field.typed.Bool(’bool None’, default=None))
self.addField(web.form.field.typed.Text('text’, default=None, treatNullStringAsNone=False))
self.addField(web.form.field.typed.Text('text None’, default=None, treatNullStringAsNone=True))
self.addField(web.form.field.typed.Integer(integer’, default=None, required=True))
self.addField(web.form.field.typed.DateTime('datetime’, default=None, required=True))
self.addField(web.form.field.typed.StringSelect('stringselect’, options=[None, 'String’], displayNoneAs="))
self.addField(web.form.field.typed.FloatSelect('floatselect’, options=[None, 1]))
self.addField(web.form.field.typed.FloatCheckBoxGroup(floatcheckboxgroup’, options=[1,5.89]))

The preffered way of adding submit buttons is as actions so Submit buttons are normally not used.
self.addAction('Validate This Form’)

def valid(self):

if web.form.Form.valid(self):
validates = True
if self.get(input’).value == 'Default Text"
self.get(input’).setError("'ERROR: You must change the text in the input box.")
validates = False
return validates
else:
return False

Print the HTTP Header
print web.header('text/html’)

Create a form
exampleForm = ExampleForm('form’, 'webserver-web-form-typed.py’, 'get’)

if len(web.cgi) > 0: # Form submitted
Populate form with the values from get.

Prepare form values:
values = {}

for k in web.cgi.keys():

values[k] = [k,str(web.cgi[k])]

if exampleForm.has_key(k):
values[k].append(exampleForm[k].value)
values|k].append(exampleForm([K].error())

exampleForm.populate(web.cgi)

for k in web.cgi.keys():

if exampleForm.has_key(k):
values|[k].append(exampleForm[Kk].value)
values|k].append(exampleForm[K].error())

if exampleForm.valid():

for k in web.cgi.keys():
if exampleForm.has_key(k):
values[k].append(exampleForm[k].value)
values[k].append(exampleForm[K].error())
valueText = ”
for k in exampleForm.keys():
if web.cgi.has_key(k):
valueText += ’'%s
"%values[k][0]

1.8. web.form

— Construction of persistant forms/wizards for HTML interfaces 99

valueText += ’<table border="0">'
valueText += '<tr><td>Create</td><td>%s</td></tr>'%web.encode(repr(values[k][2]))
valueText += '<tr><td>Error</td><td>%s</td></tr>'%web.encode(repr(values[k][3]))
valueText += ’'<tr><td>Populate</td><td>%s</td></tr>'%web.encode(repr(values[k][4]))
valueText += '<tr><td>Error</td><td>%s</td></tr>'%web.encode(repr(values[Kk][5]))
valueText += ’'<tr><td>Validate</td><td>%s</td></tr>'%web.encode(repr(values[k][6]))
valueText += ’'<tr><td>Error</td><td>%s</td></tr>"%web.encode(repr(values[k][7]))
valueText += '</table>

’

print "<html><head><title>Form Test - Validated</titte></head><body>\n<h1>It Validated!</h1>%s\n<hr>\n<h:

else:
for k in web.cgi.keys():
if exampleForm.has_key(k):

values[k].append(exampleForm[k].value)
valueslk].append(exampleForm[k].error())

valueText = ”

for k in exampleForm.keys():

if web.cgi.has_key(K):

valueText += ’'%s
'%values[k][0]
valueText += '<table border="0">'
valueText += ’'<tr><td>Create</td><td>%s</td></tr>'%web.encode(repr(values[Kk][2]))
valueText += '<tr><td>Error</td><td>%s</td></tr>'%web.encode(repr(values[k][3]))
valueText += '<tr><td>Populate</td><td>%s</td></tr>'%web.encode(repr(values[k][4]))
valueText += ’'<tr><td>Error</td><td>%s</td></tr>'%web.encode(repr(values[Kk][5]))
valueText += ’'<tr><td>Validate</td><td>%s</td></tr>'%web.encode(repr(values[k][6]))
valueText += '<tr><td>Error</td><td>%s</td></tr>'%web.encode(repr(values[k][7]))
valueText += '</table>

’

print "<html><head><title>Form Test - Errors</title></head><body>\n<h1>Please Check Entries</h1>%s\n<h

else:

print "<html><head><title>Form Test</titte></head><body>\n<h1>Welcome Please Fill In The Form</h1>%s\n<hr

You can test this example by starting the test webserver duripts/iwebserver.py’ and visiting
http://localhost:8080/doc/src/lib/webserver-web-form-typed.py on your local machine.

1.9 web.image — Create and manipulate graphics including JPG,
PNG, PDF, PS using PIL

Theweb.image currently contains one sub package for creating simple graphs from data.

1.9.1 web.image.graph — Create graphs

html2tuple (htmlColorCod¢
Returns a colour tuple dR, G, B) in hex from an HTML colour code such &4fffff . The return
value from this function can be used to specify colours ingtagh module.

htmIColorCodé he html colour code to convert.

Theweb.image.graph module is used to create PNG or similar graphs for use on web pages.

Currently the module only works with positive values for the axes and requires the presencefoiathe font

by default. This modules should be considered an early implementation. You should ensure the values you choose
produce a nice looking graph because there is very little error checking and the values you choose may not result
in the graph displaying correctly.

Here as an example showing the useage of the three main classes:
#!/usr/bin/env python

import sys; sys.path.append(’../../../") # show python where the modules are
import web.image.graph

100 Chapter 1. Web Modules

graph = web.image.graph.ScatterGraph(
XAxis={'max’:200, ’'unit:20, ’'label'Value 1 /cm"27},
yAxis={'max’:200, 'unit’:20, ’'label:'Value 2 /cm"27},
points=[(0,0),(13,68),(200,200)],
size=(500, 300),
bgColor=(240,240,240),
titte="Test Graph’

)

graph.save('scatter.ps’)

graph = web.image.graph.BarGraph(
xAxis={'max’:200, 'unit:20, ’'label''Value 1 /cm"27},
yAxis={'max’:200, 'unit:20, ’'label'Value 2 /cm"27},
points=[10,20,40,50,200,89, 30, 60, 70, 60],
size=(500, 300),
bgColor=(240,240,240),
titte="Test Graph’

)
graph.save(’bar.png’)

graph = web.image.graph.PieChart(
points={
'food’:10,
'numbers’:20,
'numbers2’:30,
h
size=(500, 300),
bgColor=(240,240,240),
titte="Test Graph’
)
graph.save('pie.jpg’)

graph = web.image.graph.BarGraph(
xAxis={'max’:200, 'unit:20, ’'label'Value 1 /cm"27},
yAxis={'max’:200, 'unit’:20, ’'label':'Value 2 /cm"27},
points=[10,20,40,50,200,89, 30, 60, 70, 60],
size=(500, 300),
bgColor=web.image.html2tuple('#FOFOFQ’),
titte="Test Graph’

)

fp = open('string.pdf’,'wb’)

fp.write(graph.toString('pdf’))

fp.close()

Note: The format of the image saved depends on the extension used. Currently supporfethare, .jpg’

ps’ . JPEG is alossy compression method and so the graphics produced as JPEGs may not be as good quality
as the others. The receommended format to useng’ . ust save your files with gng extension to have

PNG output.

It is useful to be able to produce graphs in a script and then return them. The example below generates
a graph. It can be used in an HTML tage like tkisng src="webserver-web-image-graph.py"
alt="Graph" />

#!/usr/bin/env python

""" Graph Generation Example.
""

show python where the web modules are
import sys, 0s

sys.path.append(’../")

sys.path.append(’../../..I")

1.9. web.image — Create and manipulate graphics including JPG, PNG, PDF, PS using PIL 101

import web.error; web.error.handle()
import web.image, web.image.graph

graph = web.image.graph.BarGraph(
XAxis={'max’:10, 'unit:1, ’label’’Days Since Send’},
yAxis={'max’:10, 'unit:1, ’label’’Number of Page Views'},
points=[1,5,7,8,4,3,6,8,0,1],
size=(500, 300),
bgColor=web.image.html2tuple (‘#ffffff’),
barColor=web.image.html2tuple('#000080’),
titte="Page View Rate For Newsletter’,

)
print web.header('image/png’), graph.toString(’png’)

You can test this example by starting the test webserver doriptsiwebserver.py’ and visiting
http://localhost:8080/doc/src/lib/webserver-web-image-graph.py on your local machine. You will need the
Arial.ttf font somewhere on your system where Python can find it.

1.10 web.mail — Simple function to send email using email

The mail module provides a simple functisand() which can be used to send emails as shown in the example
below:

import web.mail
web.mail.send(

msg = "Hello James!",

to = ’james@example.com’,
replyName = 'James Gardner’,
replyEmail = ’james@example.com’,
subject = '"Test Email’,

sendmail = 'usr/bin/sendmail’,
method = 'sendmail’

To send the same email via SMTP instead of usBentimail’ you would use:

import web.mail
web.mail.send(

msg = "Hello James!",

to = ’james@example.com’,
replyName = ’'James Gardner’,
replyEmail = ’'james@example.com’,
subject = 'Test Email’,

smtp = ’smtp.ntiworld.com’,
method = 'smtp’

If you get an error likesocket.error: (10060, 'Operation timed out’)
SMTP address you specified either doesn't exist or will not give you access.

it is likely that the

Function Definition:

mail (msg, to,[subject:”], [method], [smtp], [sendmai], [blind], [reply], [repIyNamd, [repIyEmaiI],msg

type|)
Text of the message

toA list of recipient addresses in the form: addr@addr.com separated by commas
subjecEmail subject line

102 Chapter 1. Web Modules

methodescribes which method to use to send the email. Casrbp’ or’sendmail’ . Only needsto
be specified if botsmtp andsendmail are specified otherwise the method that is defined is used.

smtESMTP server address

sendmaiBendmail path

blindTrue if recipients are to be blocked from seeing who else the email was sent to.
replyNamé& he name of the person sending the email.

replyEmailThe address of the person sending the email.

replyThe name and address of the person sending the email in the fofeender name
<addr@example.com>" . Should only be specified eplyNameand replyEmailare not speci-
fied.
The module also provides a methbdildReply() which can be used to put the name and email
address into the format required for tteply parameter of theend() method:

>>> import web.mail
>>> web.mail.buildReply('James Gardner, 'james@example.com’)
James Gardner <james@example.com>

typelhe second part of the content-type,’ pigin’ for a plain text email;html’ for an HTML email.

1.10.1 Example

Below is an example demonstrating some of the features which you can use to test the module:
#!/usr/bin/env python

"Test program to send mail to recipients."
import sys; sys.path.append(’../../../") # show python where the modules are

import web.mail
testAddr = raw_input(Email address 1 to recieve tests (will receive 6 emails):)
testAddr2 = raw_input(Email address 2 to recieve tests (will receive 2 emails): ')
if raw_input'Run the 6 SMTP tests: [y/n] ') ==y
smtp = raw_input(SMTP server address: ')
print "Running SMTP Test...."
counter = 1
for blind in [True, False]:
for to in [testAddr, [testAddr], [testAddr, testAddr2]]:
web.mail.send(
msg="Hello User\n\nBlind: " + str(blind),
to=to,
reply=web.mail.buildReply('web.mail Test'testAddr),
subject="SMTP Test "+ str(counter),
smtp=smtp,
blind=blind,
method="smtp’
)
print "Sent message %s."%counter
counter += 1
print "Done... check your mail'\n"

if raw_input(Run the 6 sendmail tests: [y/n]) == 'y"
sendmail = raw_input("Sendmail Path (usually /usr/lib/sendmail): ")
print "Running Sendmail Test...."
counter = 1

for blind in [True, False]:
for to in [testAddr, [testAddr], [testAddr, testAddr2]]:

web.mail.send(
msg="Hello Userl\n\nBlind: " + str(blind),

1.10. web.mail — Simple function to send email using email 103

to=to,

reply=web.mail.buildReply('web.mail Test'testAddr),
subject="Sendmail Test "+ str(counter),
sendmail=sendmail,

blind=blind,

method="sendmail’

)

print "Sent message %s."%counter
counter += 1
print "Done... check your mail!"

See Also:

email Module Documentation

(http://www.python.org/doc/current/lib/module-email.html)
Theemail module distributed with Python has a much broader API for constructing emails and should be
consulted if you plan to anything complicated such as emailing attachements.

1.11 web.session — Persistent storage of session and automatic
cookie handling

The session module is designed to provide the ability to manage sessions to allow data to persist between HTTP
requests. It is not designed to any authorisation featureseheauth is for that purpose.

1.11.1 Background Information

Note: This section is meant as a guide for beginners and can be safely skipped if you already understand the
principles of session handling in a multi-application environment.

The HTTP Protocol is Stateless

When discussing sessions the comment "The HTTP protocol is a stateless protocol, and the Internet is a stateless
development environment” is often used. This simply means that the HyperText Transfer Protocol that is the
backbone of the Web is unable to retain a memory of the identity of each client that connects to a Web site
and therefore treats each request for a Web page as a unique and independent connection, with no relationship
whatsoever to the connections that preceded it.

For viewing statically generated pages the stateless nature of the HTTP protocol is not usually a problem because
the page you view will be the same no matter what previous operations you had performed. However for appli-
cations such as shopping carts which accumulate information as you shop it is extremely important to know what
has happened previously, for example what you have in your basket. What is needed for these applications is a
way to "maintain state” allowing connections to be tracked so that the application can respond to a request based
on what has previously taken place.

Session IDs

There are two main ways in which applications can recognise a user, both of which involve identifying the con-
nection using a short string known as a session ID.

In the first method every URL on a web page if modified with the session ID on the end so that whenever a user

clicks on a link the application is aware of which user is requesting a page. One drawback of this approach is that
the session ID can easily be read as it will appear in the address bar of your browser so that a malicious onlooker
could read the session ID and type the URL into another computer. The application would think that both users

were the same person because both would be using the same session ID.

The second method involves cookies. A cookie is a simple text file stored by your browser which contains
key:value pairs of text. When you request a web page, if your browser has a cookie registered for that domain

104 Chapter 1. Web Modules

it sends the information to the web server before retrieving the page. The web browser can then react to the
information in the cookie before returning the page. If a session ID is stored in a cookie then the application can
read the session ID and therefore keep track of your connection history. Using cookies in this way is more secure
that appending a session ID to a URL because only your web browser knows the cookie information and it cannot
be read from your address bar.

Information Storage

The next step is to use a session ID to store information. One option is to put information into hidden fields in
forms and append the information to URLs. This becomes difficult for large amounts of information. A much
better way is to store the information in a server based on which session ID is accessing the website which is what
session handling modules help with.

Multiple Applications

In a real world situation there might be many different applications storing information in a session store. If
they weren't all carefully planned it would be easy for one application to over-write another’s information. One
solution might be to setup different session stores for each application but this would require tracking multiple
session IDs. A better approach is for the session application to provide a session store to each application but
handle the creation and expiry of the sessions collectively. This is exactly whaetheession does.

The HTTP Protocol and Cookie Handling

One issue which can cause problems with applications is the way session modules send cookies. When writing
a normal CGl application which simply prints information to the client's web browser you must send the HTTP
header information to the web browser before the main body of the web page. Once the browser receives two
carriage return charactems\n it knows that the information that follows is a web page and not more HTTP
headers. This is why you always pridbntent-type: text/htmi\n\n before printing<html> etc

The session handling module also prints HTTP headers to set cookie information and so it is important that the
session handling code appears before you senththe characters to your browser otherwise the page may not
display correctly. This is often hard to spot in application environments like_gition or the WSGI where

header information is separated from page content. If you have problems with the session code because pages are
not displaying correctly check the headers are being sent correctly.

Of course thaveb.session module allows you to disable this automatic cookie header printing and handle the
cookie headers in the way your application wants. This is described in the s€astom Cookie Handling
later on in the documentation.

1.11.2 Session Module Overview

Theweb.session module provides three different objects to help users manage sessions. These are:
Driver These provide the interface to the storage medium foMhrager andStore objects. For example
the DatabaseSessionDriver object is used to create a session store in SQL databases.

Manager These objects are used to handle creation, expiry, loading, validity checks and cleanup of sessions, the
handling of cookies and the creation®tore objects.

Store These are the objects used to set and retrieve the values being stored for the particular application.
To begin using the session store for your application you must perform the following steps:

1. Create dDriver

2. Ensure an environment exists for fbaver chosen

1.11. web.session — Persistent storage of session and automatic cookie handling 105

3. Create aManager object and load an existing session or create a new session

4. Obtain an applicatioBtore object

The web.session module providesveb.session.driver() and web.session.manager() func-
tions which you can use to more easily create the cobeger object andVilanager objects respectively.

If you are feeling extremely lazy you can simply useweb.session.start() function to handle everything
for you and return &tore object for your application. Alternatively you can use theb.wsgi.session
module to handle everything for you if you are using a WSGI application.

If you simply want to get started using the module quickly there is an example later on in the documentation
demonstrating some important features and a full API reference.

1.11.3 Drivers

Theweb.session module is designed so that the data can be stored in lots of different ways through the use
of different drivers. Currently only a database storage driver exists which allows session information to be stored
in any relational database supported by Web.database module. Theweb.database module includes
SnakeSQL, a pure Python database which works like a library, so you can uselitemssion module even

if you do not have access to another relational database engine.

To use theManager andStore objects we need to obtain a valitiver object. This is done as follows:

import web, web.database, web.session

connection = web.database.connect('mysql’, database='test’)
cursor = connection.cursor()

driver = web.session.driver('database’, environment="testEnv’, cursor=cursor)

In this example we are using a database to store the session information so we setup a database cursor
namedcursor as described in the documentation for theb.database module and use it to pass to the
web.session.driver() method.

The environmenfparameter is the name of the environment to be used (see the next section for information on
environments).

1.11.4 The Environment

Environments are described in the documentation fontbie.environment module but are effectively groups

of applications which share users and sessions. Specifically the name speaddfieiténmenparameter of the
web.session.driver() function is the name prepended to all database tables using that environment so that
multiple environments can be used in the same database (useful if you are using a shared web host and only have
access to one database). It is also the name used to identify the session ID in any cookis $hesion

module uses.

In order to use thaveb.session module the environment must be setup correctly. In the case of database
drivers this simply means the relevant session tables must exist. If you intend to usellaith module

you can setup the environments for tiveb.auth andweb.session modules at the same time using the
web.environment module. If you just want to setup a session environment you can so do throughivae

object.

OurDriver object from the previous section is nandrizer and we have already createdab.database
cursor namedursor . Have a look at this example:

106 Chapter 1. Web Modules

if not driver.completeSessionEnvironment():
driver.removeSessionEnvironment(ignoreErrors=True)
errors = driver.createSessionEnvironment()
if errors:
raise Exception('The environment was not sucessfully created’)
connection.commit()

If none or only some of the tables are present we drop all the existing tables (ignoring errors produced because of
missing tables) losing any information they contain and recreate all the tables.

Note: We need to check to see if any errors occured since they are not automatically raised.

We also need to commit our changes to the database so that they are savednisetgion.commit()

1.11.5 Obtaining a Session

Once the environment is set up and we have obtainBdivger object namediriver we need to create a
Manager object. We do this as follows:

manager = web.session.manager(driver=driver, expire=100)

Theweb.session.manager() function also takes a range of parameters suokxpseto set the length of

time in seconds the session is valid foramokieto set the cookie options. The full list of options is listed in the

API reference section but the default values are usually adequate. If you have not already created a driver it is
possible to specify thdriver() method’s parameters in tileanager() method and a driver will be created

for you.

If we are using cookies to store session IDs we use the Blahager object to read the session ID of the current
user from the cookie using thdanager object’s session.cookieSessionlID() method otherwise we
obtain the session ID in whichever way is appropriate for our application.

sessionID = manager.cookieSessionID()

Once a session ID is obtained we can load the sessionMEmager object'sload() method will attempt to
load a session from a session IDsHssionlDis not specified it will be obtained from a cookie. If the session is
not valid or does not exist the method retuFi@dse and sets the error to thdanager object'serror attribute.

If the session does not exist or has expired we need to create a new session using
create() . This will also automatically send cookie headers to set the session ID unless
session.create(sendCookieHeaders=False) is used, in which case you can still print the
headers manually usirgendCookieHeaders()

if not manager.load(sessionID):
newSessionID = manager.create(sendCookieHeaders=False)
manager.sendCookieHeaders()

1.11.6 Multiple Applications and Stores

Once the session is successfully loaded we can crebtiera object.

Theweb.session module supports using multiple applications within an environment. Each application has its
own session store and can only access values in its own store to avoid the risk of over-writing another application’s
data. This has the benefit of allowing applications to share the same session ID and cookie.

Application names can be a string made up of the charaaters A-Z, 0-9 and- _. . The application name
must be between 1 and 255 characters in length. The application names do not have to be the same as application

1.11. web.session — Persistent storage of session and automatic cookie handling 107

names used by theeb.auth module, although these are the most appropriate choices.

It is important you choose a name for your application which is unique in the environment you are using. For
example if you are also using theeb.auth module you should not use the application ndawgh’ since the
web.auth module used the application nara@ith’ to store its values.

To access a store using tewre() method of theManager object you must specify an application name, for
example:

store = manager.store('testApp’)

1.11.7 Using Stores

We can now use owstore variable to set and retrieve values from destApp application’s session store.
Below is a demonstration of the functional interface:

store = session.store('testApp’)

>>> store.set(key="first',value="This is the fist key to be set!’)
>>> print store.get(key="first’)

This is the fist key to be set!

>>> print store.keys()

[first’]

>>> store.delete(key="first’)

>>> gstore.has_key(key="first)

0

Alternatively we can treat thetore object as a dictionary:

>>> store[first'] = 'This is the fist key to be set!
>>> print store[first’]

This is the fist key to be set!

>>> print store.keys()

[first’]

>>> del store[first’]

>>> store.has_key('first’)

0

Both versions behave in exactly the same way and any Python value that can be picklegibiléhe module
can be set and retrieved from the store so you can store strings, numbers and even classes and all the information
will be available for each request until you remove it or the session expires.

One other useful method of tt&tore object is theempty() method. This is used to remove all information
from an application’s session store. This is a better way of removing information than usiMptieger 's
destroy() method sincedestroy() will also remove all the information from other application’s stores
which might cause those applications to crash if the store is currently being accessed.

1.11.8 Using the session.start() function

If you are using cookies (which is the recommended way of usingviitesession module) you may prefer

to use theveb.session.start() method to handle the loading or creation of the session automatically and
return a store for the application specifidtbte: This will print the cookie headers straight away so this method
will not work with WSGI applications or other non CGI environments. If you are unsure it is better to use the
longer method.

Below is an example which uses thgrt() method:

108 Chapter 1. Web Modules

#!/usr/bin/env python

show python where the modules are

import sys; sys.path.append(’../"); sys.path.append(’../../..I")
import web.error; web.error.enable()

import os, time

import web.database

Setup a database connection

connection = web.database.connect(
adapter="snakesq!",
database="webserver-session-simple",
autoCreate = 1,

)

cursor = connection.cursor()

Create a session driver and make sure the database tables exist
import web.session

store = web.session.start(
app="test’,
environmentName="testEnv’,
environmentType='database’,
expire=10,
setupSessionEnvironment=1,
cursor = cursor,

)

manager = store.manager

def printPage(title, url, link, url2, link2, data):
print """
<html>
<h1>%s</h1>
<p>%s</p>
<p>%s</p>
<p>%s</p>
</htmI>""%(title, url, link, url2, link2, data)

Write a simple application
if not manager.created:
if web.cgi.has_key('destroy’) and web.cgi['destroy’].value == 'True”
manager.destroy(ignoreWarning=True, sendCookieHeaders=False)
manager.sendCookieHeaders()
print web.header('text/html’)
printPage(
'Session Destroyed’,
os.environ[SCRIPT_NAME'],
‘Start Again’, """
)
else:
print web.header('text/html’)
manager.setExpire(manager.expireTime+5)
data = []
data.append('SessionID: ' +manager.sessionID)
data.append('Store Keys: '+str(store.keys()))
data.append('Store App: ’+store.app)
data.append('Variablel: ’+str(store['Variablel]))
data.append(ExpireTime: '+str(manager.expireTime))
printPage(
"Welcome back’,
os.environ['SCRIPT_NAME’],
'Visit Again’,
os.environ['SCRIPT_NAME']+'?destroy=True’,

1.11. web.session — Persistent storage of session and automatic cookie handling 109

'‘Destroy Session’,
'<p>Every time you visit this page the expiry \
time increases 5 seconds</p>'+'</p><p>'.join(data)

)
else:
print web.header('text/html’)
store['Variablel] = 'Python Rules!
printPage(
'New Session Started’,
os.environ['SCRIPT_NAME,
Visit Again’, ", ",
"Set variablel to 'Python Rules!™
)

connection.commit() # Save changes
connection.close() # Close the database connection

You can test this example by running the webservescripts/webserverpy’ and visiting
http://localhost:8080/doc/src/lib/webserver-web-session-simple.py

1.11.9 Managing Sessions

The following sections describe more about ki@nager object and how it can be used to manage sessions.

Checking Session Existence or Validity
If for any reason you have an application which has run for a long time, it is possible that the session has expired
since the session was originally created or loaded.

To check if a session is still valid useanager.valid() . Thevalid() method return3rue if the session
is valid, False otherwise and raises@essionError if the session no longer exists.

It is also conceivably possible that the session has been cleaned up and no longer exists. To check if a session
exists usenanager.exists() . Theexists() method return3rue if the session exist$alse otherwise
but makes no comment on whether or not it is still valid or has expired.

Destroying Sessions
Once a session has expired the data cannot be accessed by the session module. If a user tries to access an expired
session, the session is destroyed immediately.

You can also manually destroy the session usingdéstroy/() method. However it is highly recommended

that you do not destroy sessions in this way as other applications may be using the session and my crash if during
the course of program execution the session information is removed. Instead you canemetif{(® method

of the Store instance to remove all store information for your application whilst leaving the session and other
application’s information safe:

store.empty()

If you do wish to destroy a session and understand the risks you can use:

manager.destroy(ignoreWarning=True)

failing to specifyignoreWarningasTrue will result in aSessionWarning being raised to inform you of the
potential dangers.

110 Chapter 1. Web Modules

Cleaning Up Expired Sessions

Every time a session is loaded or created there is a certain probability (specifieddyahepProbabiltyparam-

eter of theweb.session.manager() function) that the session module will look through all sessions to see
which ones have expired, removing session information and expired sessions as necessary. This means sessions
are not necessarily get destroyed when they expire.

Setting the cleanup parameter too high means unnecessary work is done checking expired session more than is
needed. Too low and data may persist for a long time meaning that it takes a long time to cleanup the sessions
once the cleanup process is finally begun.

System administrators can manually cleanup sessions usiMgpti@ger instance’'sleanup() method. Using

the method without parameters removes all expired sessions. The method alsoragtaeptimaxto specify the

range of expiry times to cleanup. You can also cleanup sessions which have not yet expired but this is dangerous
for the same reasons destroying current sessions is and will r&isssfonWarning . To ignore the warning

set the parametégnoreWarningto True .

Changing the Expire Time of a Session

You can change the expire time of a session usiamager.setExpire() . The method takeexpireTime

which is the time you want the session to expire in seconds since the epoch (00:00:00 UTC, January 1, 1970) This
is the format returned byme.time() . expireTimds not the extra number of seconds to allow the session to
exist for.

1.11.10 Custom Cookie Handling
To understand how cookies work you may want to first réte HTTP Protocol and Cookie
Handling sub section of th&ackground Information section of this documentation.

If you don't want to have headers sent automatically when usingtbate() and destroy() methods
you can set thsendCookieHeadensarameter td-alse . In this case the header is instead appended to the
response _headers attribute in the form of a tuplétype, info) wheretype is the header type eg
Set-Cookie and info is the header information.

To send the headers you can ssmdCookieHeaders() to send all the headers. Once the headers are sent
they are appended to thesponse _headers attribute for debugging purposes.

Alternatively you can retrieve the last header and turn it back into a usual HTTP header using this code:

cookieHeader = "%s: %s"%manager.response_headers[-1]

If you want to build your own cookie headers you can usetCookieString(maxAg¢ and
deleteCookieString() which return HTTP headers as strings suitable for printing directly.

Finally, cookies are read from thdTTP_COOKIEenvironmental variable. If you wish to provide your own
environment dictionary instead of the default (if for example you are using a WSGI application) you can read a
cookie like this:

sessionID = manager.cookieSessionlD(environ=environ)
See the API documentation for more information.

1.11.11 Web Server Gateway Interface Middleware

A much more modular way of using theeb.session = module functions and classes is to use them as Web
Server Gateway Interface Middleware. This is described inathkb.wsgi.session module documentation

1.11. web.session — Persistent storage of session and automatic cookie handling 111

which also includes an example.

1.11.12 Implementing a new Driver

To implement a new driver you need to create a new moduleéh/session/drivers/’ with the name of the driver
as the file name andpy’ as the extension.

The file should define two classes named in a similar way to the database driver classes, one of which implements
the checking, creation and removal if the driver environment and the other implemewtdtisession module
API and inherits from the first class.

The ‘web/session/drivers/database.py’ can be used as an example. If you implement all the methods in the same
manner as the database driver and each method returns variables of the same type in the same order and raises the
same extensions you will have a valid driver.

Please forward any such drivers to the developers who may wish to include your driver if it is of a sufficiently high
standard and does not require any API changes to any of the other web modules.

1.11.13 Example

Below is an example demonstrating the full way to use the module. If you do not need this level of control over the
web.session module you can direcly use tiveeb.session.start() method. An example of the same
code written in this simpler way was shown earlier in the documentation.

Here is a full example showing the creation of all the necessary objects and giving you full control over the session:
#!/usr/bin/env python

show python where the modules are

import sys; sys.path.append(’../’); sys.path.append(’../../..I")
import web.error; web.error.enable()

import os, time

import web.database

Setup a database connection

connection = web.database.connect(
adapter="snakesql",
database="webserver-session",
autoCreate = 1,

)

cursor = connection.cursor()

Create a session driver and make sure the database tables exist

import web.session

driver = web.session.driver('database’, environment="testEnv’, cursor=cursor)

if not driver.completeSessionEnvironment():
driver.removeSessionEnvironment(ignoreErrors=True)
driver.createSessionEnvironment()

Set up a session manager and load or create a new session

manager = web.session.manager(driver=driver, expire=10)

sessionID = manager.cookieSessionID()

if not manager.load(sessionID):
manager.create(sendCookieHeaders=False)
manager.sendCookieHeaders()

Get the session store for this application
store = manager.store('testApp’)

def printPage(title, url, link, url2, link2, data):
print nan
<html>

112 Chapter 1. Web Modules

<h1>%s</h1>

<p>%s</p>

<p>%s</p>

<p>%s</p>

</htmI>""%(title, url, link, url2, link2, data)

Write a simple application
if not manager.created:
if web.cgi.has_key('destroy’) and web.cgi['destroy’].value == 'True”
manager.destroy(ignoreWarning=True, sendCookieHeaders=False)
manager.sendCookieHeaders()
print web.header('text/html’)
printPage(
'Session Destroyed’,
os.environ[SCRIPT_NAME],
‘Start Again’, """
)
else:
print web.header(text/html’)
manager.setExpire(manager.expireTime+5)
data = []
data.append('SessionID: ' +manager.sessionID)
data.append('Store Keys: '+str(store.keys()))
data.append(’'Store App: '+store.app)
data.append(’Variablel: ’+str(store['Variable1))
data.append(’ExpireTime: ’+str(manager.expireTime))
printPage(
'Welcome back’,
os.environ[SCRIPT_NAME'],
'Visit Again’,
os.environ['SCRIPT_NAME']+?destroy=True’,
'‘Destroy Session’,
'<p>Every time you visit this page the expiry \
time increases 5 seconds</p>'+'</p><p>’.,join(data)
)
else:
print web.header(text/html’)
store['Variablell] = 'Python Rules!
printPage(
'New Session Started’,
os.environ[SCRIPT_NAME],
'Visit Again’, ”
"Set variablel to 'Python Rules!™

)

connection.commit() # Save changes
connection.close() # Close the database connection

You can test this example by running the webservescriptsiwebserver.py’
http://localhost:8080/doc/src/lib/webserver-web-session.py

1.11.14 API Reference

Driver Objects

driver (driver, environment, **params
Used to return ®river object.

driverThe type of driver being used. Currently ontlatabase’ is allowed

and visiting

environmen®he name of the environment being used. In the case of the database driver this is the string
prepended to all the tables used in the environment so that multiple environments can share the same

1.11. web.session — Persistent storage of session and automatic cookie handling

113

database.

**paramsAny parameters to be specified in the formatme=valuevhich are needed by the driver specified
by driver

classDriver
Driver objects have a number of methods which driver implementers must implement. These are docu-
mented in the source code. The following public methods are used to setup the environment.

completeSessionEnvironment 0
ReturnsTrue if the environment is correctly setupalse otherwise. In the case of the database
driver this method simply checks that all the necessary tables exist.

createSessionEnvironment 0
Creates the necessary environment. In the case of the database driver this method creates all the
required tables. If any of the tables already exist an error string is returned.

removeSessionEnvironment ([ignoreErrors=Falsd)
Removes the environment. In the case of the database driver this method drops all the tables. If any of
the tables are not present a list of errors is returned urdesseErrorsis True

Manager Objects

manager (driver, [expire:8640d, [path] , [domain] \ [commen], [maxAgd, [seed], [cleanupProbabiIit)],
[**driverParams)
Used to return a sessidvtianager object.

Manager Parameters:

driver and **driverParamslf driver is a string, any extra parameters passed to the

web.session.manager() function are passed onto theveb.session.driver()
function to create a driver. Alternativeldriver can be aDriver object as returned by
web.session.driver() and no**driverParamsneed to be specified.

expireThe number of seconds a newly created session should be valid for. If not specified the default is
86400 seconds which is 24 hours.

seedVhen generating session IDs it is important a hacker cannot guess what the next session ID will be
otherwise they could make a cookie so that the application thinks they are someone else. You can
specify aseedwhich is simply a string to make the generation of session IDs even more random. The
default is’PythonWeb’

cleanupProbabilitfevery so often expired sessions and their corresponding data need to be removed from
the session store. There is a probability specifiedlbanupProbabilitythat this cleanup will occur
when aManager object is created. KfleanupProbabilityis 1 cleanup is done every time\danager
is created. ItleanupProbabilityis 0 no automatic cleanup is done and cleanup is left to the adminis-
trator. The defaulti©.05 which means old session information is removed roughly every 20 times a
Manager object is created.

Cookie Parameters:

pathThe path of the domain specified bdpmainfor which the cookie is valid. If not specified the default
is’ which means the whole website. XXX is this correct?

domainThe domain for which the cookie is valid. If not specified the defaultisvhich means any domain.
XXX is this correct?

commenfn optional comment for your cookie to explain what it does or who set it
maxAgeTl he length of time in seconds the cookie should be valid for. If sétttee cookie will last until the
web browser is closed. If not set it will take the value of éx@ireparameter.

classManager
All sessionManager objects have theead only member variables which you should not set:

114 Chapter 1. Web Modules

sessionID
The session ID for the current session. This is a unique 32 character string set after a session is created
or loaded. It iSNone before that time.
expire
The expire length in seconds (the minimum length of the session)
seed
The default seed used to generate the session ID

cookie
A dictionary containing the cookie parameters.

error
If an error occurred loading a session, for example the session ID did not exist or had expired, the error
is available through this attribute. If no error occurred the valiéoise.

cleanupProbability
The probability of checking for, and removing expired sessions

response _headers
A list of cookie headers in the WSGI form@ype, value)

sent _headers
A list of the cookie headers printed afteendCookieHeaders() has been called. Useful for
debugging

load ([sessionID:Noné)
Attempt to load the session with the sessiorsd3sionIDIf sessionlDs not specified the session ID is
obtained from a cookie usirms.environ . If your environment doesn’t support loading of a cookie
in this wayseesionlDshould be specified. If the session exists and is valid it is loaded and the method
returnsTrue otherwise it returngalse and you should create a new session usiegite() . The
reason the session could not be loaded is set tetfoe attribute.

create ([sendCookieHeaders:Trl]e[expire])
Generate a new session ID and start a new session with itserlfiCookieHeaders True a
Set-Cookie HTTP header is immediately printed. False a WSGI(type, info) header
is appended toesponse _headers so the application can handle the header itseléxffireis the
number of seconds the session should be valid for. If not specified the valueedtine attribute
is used. Returns the new session ID.

store (app
Return a sessiotore object for manipulating values in the application’s st@agpis the application
name as a string made up of the characters, A-Z, 0-9 and- _.. The application hame must
be between 1 and 255 characters in length. The application names do not have to be the same as
application names used by theb.auth module, although these are the most appropriate choices.
If you are not using multiple applications you should still give your application a name, perhaps
‘default’ for example.

destroy ([sessionllﬂ, [sendCookieHeaders:Trl]e[ignoreWarning:FaIsd)
Remove all session information for the sessionsds$sionlDis specified all session information for
sessionlDis removed. IfsendCookieHeadeis True aSet-Cookie HTTP header is immediately
printed. If False a WSGI(type, info) header is appended tesponse _headers so the
application can handle the header itselfigioreWarnings not set toTrue aSessionWarning is
raised explaining why destroying sessions is not a good idea.
Warning: Destroying sessions is strongly not recommended since any other application currently
using the session store may crash as the session information will have been removed. If you wish
to remove all data from the session store it would be better to us8ttire object’s empty()
method, emptying the store but leaving the session intact. If you must remove a session use
setExpire(time.time()) to make the session expire immediately or send a cookie built with
deleteCookieString() . Any applications using the session will still be able to access the infor-
mation if they have already loaded the session but will not be able to load the session again.

genSessionID ([seeci)
Obtain a new session ID based oml5. If after 100 attempts no new session ID has been created
because the IDs generated already exiStessionError s raised. Ifseedis specified it is used to
make the generation of session ID more random, otherwise the sedak is used.

1.11. web.session — Persistent storage of session and automatic cookie handling 115

cookieSessionID ([environ=Nond, [noSessionID='])
Obtain a session ID from thdTTP_COOKIEenvironmental variable. The defagltviron dictio-
nary isos.environ . If you wish to provide your own environment dictionary (for example you are
using a WSGI application) you can specé#gviron If the session ID cannot be loadedSessionlIDs
returned which by default is an empty string.

cleanup ([min], [max], [ignoreWarning:Falsé)
Remove and information related to sessions which have expired between thartimasd max
All times are in seconds since the epoch (00:00:00 UTC, January 1, 1970)in I§ not specified
it is assumed to b@ (the beginning of the epoch), haxis not specified it is assumed to be the
current time. If you specify a valumaxgreater than the current time returnedibte.time() a
SessionWarning s raised. To ignore the warning sghoreWarningto True .
Warning: You should not set a value ofiaxgreater than the current time unless you understand
the risk since doing so will remove sessions which haven't yet expired. If an application is using the
session store and its session is cleaned up, that application may crash.

setExpire (expireTime[sessionI[i)
The method is used to change the time an existing session will expire or to set a new expiry date
if it has already expiredexpireTimeis the time you want the session to expire in seconds since the
epoch (00:00:00 UTC, January 1, 197@xpireTimeis NOT the extra number of seconds to allow
the session to exist for. BessionlDis specified the expire time of the session withd&ssionIDis
updated, otherwise the current session expire time is modified.

valid ([sessionllj)
If sessionIDis specified the validity of the session with EessionlIDis checked. Otherwise the
current session is checked. Retufirsie if the session is validialse if the session has expired.
A SessionError s raised if the session does not exist. Whether or not a session exists can be
checked with thexists() method.

exists ([sessionllj)
If sessionlDis specified the session with 1BessionlDis checked. Otherwise the current session is
checked. Return$rue if the session is existssalse if the session does not exist. No comment
is made on whether or not the session is still valid, instead this can be checked withlitife
method.

sendCookieHeaders ()
Uses Python'grint statement to send any headers in tegponse _headers attribute to the
standard output, appending the exact strings printed tesehd _headers attribute for debugging
purposes. Used by thereate() anddestroy() methods to send cookie headers so could be
over-ridden in derived classes to change cookie handling behaviour.

setCookie ([maxAgd, [sendCookieHeadersta@aa
Get a cookie string frorsetCookieString() to set a new cookie, parse the string into a WSGI
(type, info) pair and append it to theesponse _headers attribute. IfmaxAgds not speci-
fied the default specified in the class creation is usethakAgeof 0 means the cookie expires when
the browser is closed otherwiseaxAgeshould be the length of time in seconds the cookie should
remain valid for. IfsendCookieHeadeiis True , sendCookieHeaders() is called to send the
cookie header.

setCookieString ([maxAgd)
Returns an HTTP header to set a cookie using the default cookie values set in the class constructor. If
maxAgeis not specified the default specified in the class creation is usedaxgeof 0 means the
cookie expires when the browser is closed othenmssxAgeshould be the length of time in seconds
the cookie should remain valid for.

deleteCookie ([sendCookieHeaderstaI§¢
Get a cookie string frondeleteCookieString() to set the expire time of the cookie to one
second, parse it into a WSGlype, info) pair and append it to theesponse _headers
attribute. IfsendCookieHeadeiis True , sendCookieHeaders() is called to send the cookie
header.

deleteCookieString 0
Returns an HTTP header to set the expire time of the session cookie to 1 second, effectively forcing it
to expire.

116 Chapter 1. Web Modules

Store Objects

The Store object is obtained from thstore() = method of theManager object. It is used to manipulate the
session store of the application specified indtere() method.

classStore
Store objects have the following attribute:

app
This is the name of the application whose store we are manipulatpg. can be set to another

application’s name in order to manipulate a different session store. Application names are strings
made up of the characteassz , A-Z,0-9 and- _. and are between 1 and 255 characters in length.

Store objects have the following methods:

set (key, valug
Set the value okeyto the valuevaluein the session storeraluecan be any Python object capable of
being pickled. See Pythonfsickle module for more information.

get (key
Get the value okeyfrom the session store.

delete (key)
Removekeyand its associated value from the session store.

empty ()
Empty this application’s session store of all information removing all keys and values but leaving the
session itself and other application’s stores intact.

has _key (key)
ReturnsTrue if keyexists on the session store otherwigdse .

keys ()
Returns a sequence of store keys. The order of the keys is not defined. Keys obtained from this method
cannot be set directly. Instead thet() method should be used.

items ()
Returns a tuple ofkey, value) pairs for each key in the store. The order of the values is not
defined. Values and keys obtained from this method cannot be set directly. Insteat{Yhemethod
should be used.

values ()
Returns a sequence of store values. The order of the values is not defined. Values obtained from this
method cannot be set directly. Instead$le() method should be used.

Store objects also implement the following methods: getitem __(key) , __setitem __(key,
value) and __delitem __(key) which map directly to theget(key) , set(key) and
delete(key) methods respectively and allow tBéore object to be treated similarly to a dictionary as
demonstrated earlier in the documentation.

The start() Function

start (app, environmentName[, environmentType=’databas]3’ [expire=0] [setupSessionEnviron-
ment=Fals [path:’/’] [domain=" [comment="Built in Python using wep.session from python-
web.or] , maxAge:Non§e [seed:’PythonWed’ [cIeanupProbabiIity:0.0§ [**environment-

Paramsg|)
Used to return &tore object.

Most of the options are self-explanitorgppis the name of the application (which should notð’

since theveb.auth module uses that namsetupSessionEnvironmeran be set tdrue to automatically

create the correct tables if any are missing (if only some of the tables are present all session tables are
removed destroying any information contained them before all the tables are recreat@dymentParams

are any parameters used by the environmenenifironmentTypés 'driver’ you would also need to
specify acursorparameter for examplelomain commentmaxAgeseedandcleanupProbability=0.0%re

the same as specified in theanager() function described earlier.

1.11. web.session — Persistent storage of session and automatic cookie handling 117

1.12 web.template = — For the easy display of data as HTML/XML

Theweb.template module currently only provides one functiqgmasrse() , used to parse a template.

parse (type='python’, dict=None [,filezNone][,template=N0né[,useCompiled="auto
,swapTempIatePaths:Noha
Simple wrapper method to load and parse a template from the options given.

typeThe type of template to parse. Can beython’ , ’'cheetah’ , ’xyaptu’ or
'dreamweaverMX’ . A’python’ template is a string using the dictionary filling format.

dictA dictionary of values used to fill the template

fileThe file containing the template. If not specified\wne, templatemust be specified.

templat&he template as a string. If not specified\wne, file must be specified.

useCompile®nly used for Cheetah. Specifies whether or not a compiled version of the template should be
used.

swapTemplatePatl@nly used for DreamweaverMX. Ione nothing is done. Otherwise can be set to
(oldPath, newPath) to swap paths in the template itself before the parsing is done.

Simple example:

>>> import web.template
>>> print web.template.parse(dict={'w’:’'World!"}, template="Hello %(w)s")
Hello World!

This is the same as doing this in Python:

>>> print "Hello %(w)s"%{'w’:"World!"}
Hello World!

1.12.1 Cheetah Template

Cheetah is a powerful, stable and well documented templating system. It works by parsing the template into a
Python script and then executing that script with the dictionary to produce output. The performance of Cheetah
can be improved by writing this script to a file and executing it each time Cheetah is run rather than re-generating
it every time.

TheuseCompileghbarameter of thparse() function can be used to determine the behaviour of this compilation.

If useCompileds False the template is parsed every time. This is the slowest but simplest optisseTompiled

is True the compiled template is used even if the original template has changed. This is the fastest option but you
must manually tell Cheetah to recompile the template if it changesel€ompileds 'auto’ then Cheetah will

use the compiled file as long as the template has not been modified. If it has it will automatically recompile the
template.

Warning: This is the best comprimise. liseCompileds True or’auto’ then Cheetah must have write access

to the directory containing the templates. If it doesn’t you may get Internal Server Errors, particularly if you are
usingweb.error with Cheetah templates to catch errors as an error will be thrown in the error catching code
and this will lead to an error that is hard to track down.

You can also use Cheetah directly by importing it as follows:

import web
import Cheetah

Here is an example Cheetah template:

<?xml version="1.0" encoding="is0-8859-1"?>

118 Chapter 1. Web Modules

<IDOCTYPE html PUBLIC "-//W3C//[DTD XHTML 1.0 Transitional/EN"
"http://iwww.w3.0rg/TR/xhtmI1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<title>S$title</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
</head>

<body>

<h1>$title</h1>

$welcomeMessage

#if $testVar == True

The test variable is True

telse

The test variable is not True

#end if

</body>

</html>

Here is a program to manipulate it:
#!/usr/bin/env python

import sys; sys.path.append(’../../../") # show python where the web modules are
import web.template

dict = {
‘welcomeMessage':'Welcome to the test page!,
'testVar:True,
‘title’:’"Cheetah Example’,

}

print web.template.parse(
type="cheetah’,
file="file-web-template-cheetah.tmpl’,
dict=dict

)

And here is the output produced:

<?xml version="1.0" encoding="is0-8859-1"?>

<IDOCTYPE html PUBLIC "-//W3C//[DTD XHTML 1.0 Transitional/EN"
"http://www.w3.0rg/TR/xhtmI1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<title>Cheetah Example</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
</head>

<body>

<h1>Cheetah Example</h1l>

Welcome to the test page!

The test variable is True

</body>

</html>

See Also:

Cheetah Template Homepage

(http://cheetahtemplate.org/)
The Cheetah homepage has full documentation for using Cheeath and explains the full syntax available and
the range of options that can be used.

1.12. web.template = — For the easy display of data as HTML/XML 119

1.12.2 XYAPTU Templating

XYAPTU is an ASPN recipie based on YAPTU. Both modules are included with the web modules and can be
imported directly:

import web
import xyaptu, yaptu

Here is an example xyaptu template:

<?xml version="1.0" encoding="is0-8859-1"?>

<IDOCTYPE html PUBLIC "-//W3C//[IDTD XHTML 1.0 Transitional//EN" "http://www.w3.0rg/TR/xhtm|1/DTD/xhtml1-transi
<html xmlIns="http://www.w3.0rg/1999/xhtml">

<head>

<title>$title</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

</head>

<body>
<p>$welcomeMessage</p>
<py-open code="if testVar:" />
The variable is: True
<py-clause code="else:" />
The variable is: False
<py-close/>

</body>
</html>

Here is a program to manipulate it;

#!/usr/bin/env python

import sys; sys.path.append(’../../../") # show python where the web modules are
import web.template

dict = {
‘welcomeMessage’:’'Welcome to the test page!,
'testvVar:True,
‘title’”XYAPTU Example’,

}

print web.template.parse(
type="xyaptu’,
file="file-web-template-xyaptu.tmpl’,
dict=dict

)

And here is the output produced:

120 Chapter 1. Web Modules

<?xml version="1.0" encoding="is0-8859-1"?>

<IDOCTYPE html PUBLIC "-//W3C//[DTD XHTML 1.0 Transitional//EN" "http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transi
<html xmlins="http://www.w3.0rg/1999/xhtml">

<head>

<title>XYAPTU Example</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

</head>

<body>
<p>Welcome to the test page!</p>

The variable is: True

</body>
</html>

See Also:

XYAPTU Information on ASPN
(http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/162292)
This page is where the recipie first appeared and is where the most complete documentation can be found.

1.12.3 Dreamweaver MX

The web modules can also parse Dreamweaver MX templates as long as they only use standard Editable Regions
and the regions are empty so that the tags look like this:

<l-- TemplateBeginEditable name="content" --><!-- TemplateEndEditable -->

DreamweaverMX templates are passed just like the others except yiypestet'dreamweaverMX’

Warning: If you set thedoctitle editable region please remembe to inclgdidle> and</title> tags
around the title you set as the template doesn'’t include these for you.

Here is an example Dreamweaver MX template:

<?xml version="1.0" encoding="is0-8859-1"?>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.0rg/TR/xhtmI1/DTD/xhtml1-transi
<html xmlIns="http://www.w3.0rg/1999/xhtml">

<head>

<l-- TemplateBeginEditable name="doctitle" -->

<title>PythonWeb.org - Dreamweaver MX Example</title>

<l-- TemplateEndEditable -->

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

<l-- TemplateBeginEditable name="head" --><!-- TemplateEndEditable -->

</head>

<body>

<hl><!-- TemplateBeginEditable name="Title" -->Web Modules<!-- TemplateEndEditable --></h1>
<!-- TemplateBeginEditable name="Content" -->
<p> </p>
<l-- TemplateEndEditable -->

</body>
</html>

1.12. web.template = — For the easy display of data as HTML/XML 121

Here is a program to manipulate it:
#!/usr/bin/env python

import sys; sys.path.append(’../../../") # show python where the web modules are
import web.template

dict = {
‘Content’:’'Welcome to the test page!,
‘doctitle’:’Dreamweaver MX Example’,
‘Title':’'Dreamweaver MX Example’,

}

print web.template.parse(
type="dreamweaverMXx’,
file="file-web-template-dreamweaverMX.dwt’,
dict=dict

)

And here is the output produced:

<?xml version="1.0" encoding="is0-8859-1"?>

<IDOCTYPE html PUBLIC "-//W3C//[DTD XHTML 1.0 Transitional//EN" "http://www.w3.0rg/TR/xhtm|1/DTD/xhtml1-transi
<html xmlins="http://www.w3.0rg/1999/xhtmI">

<head>

<!l-- InstanceBeginEditable name="doctitle" -->Dreamweaver MX Example<!-- InstanceEndEditable -->

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

<l-- InstanceBeginEditable name="head" --><!-- InstanceEndEditable -->

</head>

<body>

<h1l><!-- InstanceBeginEditable name="Title" -->Dreamweaver MX Example<!-- InstanceEndEditable --></h1>
<l-- InstanceBeginEditable name="Content" -->Welcome to the test page!<!-- InstanceEndEditable -->

</body>
</html>

1.13 web.utii — Useful utility functions that don't fit elsewhere

This module provides a number of functions which come in handy when programming web applications but that
don't fit in elsewhere. It is a catch all module for useful leftovers.

wrap (text, width
A word-wrap function that preserves existing line breaks and most spaces in the text. Expects that existing
line breaks are posix newlines. (ie backslash n)
textThe text to wrap
widthThe maximum number of characters in a line
strip (html, [validTags=[])
Strip illegal HTML tags from string
htmIThe HTML which needs some tags stripping
validTag4A list or tuple of tags to leave in place
runWebServer ([root:’../’, cgi='/cgi-bin’,])

Run a simple webserver on port 8080 on localhost. The root of the website corresponds to the directory
root. cgi is URL of the the cgi-bin where files can be executed. Once this command is run code execution

122 Chapter 1. Web Modules

stops as the webserver listens for requests so there is no point in writing code after this command as it will
not be run.

Warning: NOT SUITABLE FOR COMMERCIAL USE.

dirThe only directory where scripts are allowed to run. Directory names should be the full URL path from
the root of the webserver and therefore should begin fvith

table (columns, values[,width:SO], [mode])
Pretty print a table of data for display in a terminal of wiltldth

Warning: This function has changed radically from version 0.4.0

columnsThe names of the columns in the order they are displayed in each row of values.
valuesThe data to be displayed in the format:

(

(‘columnilvaluel’, 'column2valuel’, 'column3valuel’, 'column4valuel’),
(‘columnilvalue2’, 'column2value2’, 'column3value2’, 'column4value2’),
(‘columnilvalued’, 'column2valued’, 'column3value3’, 'column4value3’),

The values and column headings can be any object which can be converted to a strirggr(Jsing

widthThe wrap width of the string produced. The defaul8@which means the table will we wrapped to
the width of a standard terminla or command line prompivitithis set to0 no wrapping is produced.

displayf displayis set to'terminal’ the line ending at the wrap width (specified Width) will not be
added since the line will wrap around to the next line anyway. Adding the linebreak would result in
blank lines appearing.

moddf modeis setto'sgl’ the values are encoded in a way to reprediarie asNULLand useepr()
whenstr() would be ambiguous.

For example:
#!/usr/bin/env python
import sys; sys.path.append(’../../../") # show python where the web modules are

import web.util
columns = [
‘columnlHeading’,
‘column2Heading’,
‘column3Heading’,
‘column4Heading’
]
values = [
[‘columnlvaluel’, 'column2valuel’, 'column3valuel’, 'column4dvaluel’],
[‘columnlvalue?’, 'column2value?’, 'column3value?’, 'column4value2’],
[‘columnlvalue3’, 'column2value3’, 'column3value3’, 'column4value3’],
]
print "Printing the table with wrap width=0...\n"
print web.util.table(columns, values, width=0)
print "Printing the table with wrap width=60...\n"
print web.util.table(columns, values, width=60)

1.13. web.util — Useful utility functions that don't fit elsewhere 123

The output produced is:
Printing the table with wrap width=0...

+ + + + +
T T T T T

| column4Heading | column3Heading | column2Heading | columnlHeading |

+ + + + +

column4valuel	column3valuel	column2valuel	columnlvaluel
columndvalue2	column3value2	column2value2	columnlvalue2
columndvalue3	column3value3	column2value3	columnlvalue3

+ + + + +
T T T T T

Printing the table with wrap width=60...

+ + + +

| column4Heading | column3Heading | column2Heading | columnil

+ + + +
T T T T

| columndvaluel | column3valuel | column2valuel | columnl
| columndvalue2 | column3value2 | column2value2 | columnl
| columndvalue3 | column3value3 | column2value3 | columnl

+ + + +

valuel |
value2 |
value3 |

Warning: If you don't set the wrap width and your table is wider than the terminal then the terminal will wrap the
table output itself. If this happens it will wrap each induvidual line of text rather than the whole table producing

output that looks more like this:

+ + +
me o eeeeeee +

| column4Heading | column3Heading | column2Headin
g | columnlHeading |

+ + +
t 1 1

me o eeeee +
| columndvaluel | column3valuel | column2valuel
| columnilvaluel |
| columndvalue2 | column3value2 | column2value2
| columnilvalue2 |
| columndvalue3 | column3value3 | column2value3
| columnlvalue3d |
+

1.14 web.xml — XSLT Transform

Theweb.xml module currently only provides one functianansform()
to an XML document.

transform (input, stylesheet, output
The path to the XML file

stylesheé€fhe path to the stylesheet file

, used to apply an XSL Stylesheet

124

Chapter 1. Web Modules

input

outputThe file where the output should be written
For Example:

‘file-web-xml.xml’
<source>

<title>XSL</title>
<author>John Smith</author>

</source>
‘file-web-xml.xsl’

<xsl:stylesheet version = '1.0’
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform’>
<xsl:template match="/">
<hl>
<xsl:value-of select="//title"/>
</h1>
<h2>
<xsl:value-of select="//author"/>
</h2>
</xsl:template>
</xsl:stylesheet>

And the code to transform it:

‘command-web-xml.py’

#!/usr/bin/env python

import sys; sys.path.append(’../../../") # show python where the web modules are
import web.xml
web.xml.transform("file-web-xml.xml","file-web-xml.xsl","xml.html")

This creates the output filge'st.html’;

<?xml version="1.0"?>
<h1>XSL</h1><h2>John Smith</h2>

1.15 web.wsgi — Web Server Gateway Interface tools

The WSGI interface is a specification designed by Phillip J. Eby with contributions from the Python Web-SIG
mailing list which defines a proposed standard interface between web servers and Python web applications or
frameworks, to promote web application portability across a variety of web servers.

Theweb.wsgi module implements the WSGI interface for the Web Modules.

Note: The web server interface and tools proposed for previous versions of the modules have now been dropped
in favour of supporting the WSGI in their place. All components which were implemented have now been moved
into WSGI middleware components instead.

See Also:

PEP 333 - Python Web Server Gateway Interface

(http://www.python.org/peps/pep-0333.html)
This document specifies the Web Server Gateway Interface and defines some simple objects demonstrating
the approachPEP 333 should be read before reading this documentation

It should also be noted that the web modules WSGI implementation is based heavily on Phillip J. Eby’s
wsgiref implementation

1.15. web.wsgi — Web Server Gateway Interface tools 125

Note: The WSGI specification is farily new and the author of this document is learning it as he goes along!
Consequently there may be important omissions or even errors. | would very much appreciate any comments or
corrections so please feel free to contact docs at pythonweb.org if you have any.

1.15.1 Introduction
What is a WSGI application?

The WSGI PEP can be quite confusing if all you want to do is write applications quickly and easily. The best way
to explain the WSGI is to work through an example demonstrating how an application written as a CGI script has
to be modified to work as a WSGI application.

Consider the CGl script code below:

#!/usr/bin/env python
print 'Content-type: text/plain\n\n’
print 'Hello world!”

This does nothing more than print the wortkello world!’ to a web browser in plain text. What we have
done is sent an HTTP head€pntent-type: text/plain\n\n and then a text string to the browser.
The webserver may also have sef2@ OK’' response if the application didn’t crash.

To create the same result using a WSGI application we would use this code:

def application(environ, start_response):
start_response('200 OK’, [('Content-type’,'text/plain’)])
return ['Hello world!]

WSGI servers are configured to look for an object with a particular name, uapdlication , and call it,
passing thepplication callable a dictionary nameehviron containing environmental variables and also a
function namedstart_responsevhich must be called before the application returns a value. Our callable named
application is our WSGI application. You could name it differently if your WSGI server had a different
naming convention.

You may not be happy with the functiatart _response being passed as a parameter toapplication
callable. Whilst this is not possible in some other languages it is perfectly legitimate in Python. This ability to
pass callables as function parameters is crucial to understanding how the WSGI works.

Here is an example to consider:

def b(text):
print text

def a(print_response):
print_response("Hello World!")
return "It worked!"

print a(b)

In this case we are passing the functioto thea as the parametgrint_responseWe are then printing the value
returned froma. What do you think the result will be?

The answer is this:

Hello World!
It worked!

126 Chapter 1. Web Modules

Make sure you understand this example before you read on.

A WSGI application must do two things, these are:

1. Call thestart _response function (passed to owpplication callable) with the parametessatus
andheadersn the correct order. This will set the status of the application and send the HTTP headers. In
our example the status®00 OK’ meaning everything has gone according to plan and we only send one
header, th€ontent-type header with the valutext/plain

2. Return an iterable containing nothing but strings. In this example the iterable is simply a list containing one
string. The return value could equally well have b§etello’, ' ’, 'world!] but there was no
need to make things more complicated.

There are some big advantages in rewriting our code as a WSGI application:

e All HTTP headers are sent at the same time before the main content avoiding the possibility of sending
HTTP headers at the wrong time.

e The application has control over its status. For example if the application encountered an error it could send
an’500 Error’ status message and the WSGI server would display its appropriate error page.

e And most importantly, by using callables in this standard way it is possible to chain together applications
called middleware components to provide applications with extra functionality with very little programming
effort.

What Are Middleware Components?

Consider the slightly more complicated example below using the imaginary session handling module
superSession

#!/usr/bin/env python

import superSession
session = superSession.session()
print "Content-type: text/plain\n\n"
if session.has_key('visited’):

print "You have already visited!"
else:

session['visited’] = 1

print "This is your first visit."

We create a session object and display a different string depending on whether or not the user has visited the site
before. We could follow the approach above and create the following WSGI application to do the same thing:

def application(environ, start_response):
import superSession
session = superSession.session()
if session.has_key('visited’):
text = "You have already visited!"
else:
session['visited’] = 1
text = "This is your first visit."
start_response('’200 OK’, [('Content-type’,'text/plain’)])
return [text]

This would be perfectly good and work perfectly well. We could now refactor the code again:

1.15. web.wsgi — Web Server Gateway Interface tools 127

def exampleApplication(environ, start_response):
if environ['superSession’].has_key(visited’):
text = "You have already visited!"
else:
environ['superSession’]['visited] = 1
text = "This is your first visit."
start_response('200 OK’, [('Content-type’,'text/plain’)])
return [text]

def session(application):
def app(environ, start_response):
if "superSession" not in environ:
import superSession
environ['superSession"] = superSession.session() # Options would obviously need specifying
return application(environ, start_response)
return app

application = session(exampleApplication)

We have separated out the session code into a different function and added a kegnwoitbe dictionary
called"session” which contains the session object. GaxampleApplication then accesses the ses-
sion object through thenviron dictionary. Note how we have renamed application function to
exampleApplication and mapped the nanagplication to thesession(exampleApplication)

object. The WSGI server will still be able to find a callable narapglication and so will still be able to run
our application.

Thesession function is now what we call a middleware component as it sits in between the server and the appli-
cation. It gives the application new functionality but the result of caliagsion(exampleApplication)

is also just a WSGI application (because the combined object still conforms to the rules listed earlier) and so the
server can still run the code.

The huge advantage of refactoring code in this way is that the session functionality can now easily be added
to any WSGI application using owgession function. By chaining together these middleware components
(which do not even have to be based on the Web Modules) WSGI applications can gain an enormous amount of
functionality for very little programming effort by using existing middleware components. This helps make code
easy to maintain and offers a very flexible programming methodology.

Callables, Classes or Functions?

| have been quite careful all the way through the introduction to describe the application and middleware as
callables and not just as functions (which is what they have happened to be so far). We could re-write the session
middleware component described in the previous section as follows:

class Session:
def __init_ (self, application):
self.application = application

def _ call__(self, environ, start_response):
if "superSession" not in environ:
import superSession
environ["superSession"] = superSession.session() # Options would obviously need specifying
return self.application(environ,start_response)

application = Session(exampleApplication)

If you think carefully about what is happening here you will realise thatmssion class behaves in exactly
the same way as the functisession did in the previous example.

128 Chapter 1. Web Modules

The advantage of using a class rather than a function for a middleware component is that you can derive an-
other middleware component from an existing one that provides similar functionality without re-writing the entire
component.

The web.wsgi module contains middleware classes for all of the web modules functionality which you can
use on their own or as base classes for your own middleware components including session functionality. The
middleware components are all described later on in this documentation.

Running WSGI Applications

The Python web modules come with two solutions for running WSGI applications, a WSGI server and a
runCGIl() middleware component allowing WSGI applications to be run from CGI scripts on servers such
as Apache.

Note: It much faster to execute WSGI applications through a dedicated WSGI server than to run them as CGI
scripts. When a CGl script is executed all the Python libraries and modules the script uses need to be loaded into
memory and then removed once the script exists. This has to happen for every request so there is an unecessary
delay before the WSGI application is even executed. When using a WSGI server the libraries and modules only
need to be loaded once and are then available for any subsequent requests so simple web requests can be handled
perhaps 5-10 times faster.

The PythonWeb WSGI Server

A WSGI server has to be able to convert a URL to a path on a drive, find the application appi@ation
within the file specified and call it, passing the application a dictionary of environmental variables and a
start _response function to set the status of the application and send the HTTP headers.

Note: As we have seen the object nameagublication may not be an application at all, it may in fact be a

chain of middleware components and an application, but the WSGI server treats it in the same way because, as
we have already seen, applications with middleware stacks behave in exactly the same way as an application on
its own.

The Python Web Modules come with just such a WSGI server nawstIServer.py’ and available in the
‘scripts’ directory of the Web Modules distribution.

To use the WSGI server simply run th&SGIiServer.py’ file from the command line by executing the following:

> python WSGIServer.py

A sample WSGI application should be available Hayp://localhost:8000/doc/src/lib/wsgi-simple.py with a web
browser.

‘WSGIServer.py’ also takes a series of arguments to customise its behaviour. These can be viewed by running
python WSGIServer.py -h at the command line.

The runCGI() Method
You may not be in a situation where you have access to a WSGI server. The Python web modules also come with
a code to allow WSGI applications and middleware to be run in a CGIl environment such as Apache.

If you want to run a WSGI as a CGlI application you need to turn it back into one. This can be done very simply
by using the middleware componeméb.wsgi.runCGl as shown below:

1.15. web.wsgi — Web Server Gateway Interface tools 129

def application(environ, start_response):
start_response(’200 OK’, [('Content-type’,text/plain’)])
return ['Hello world!]

import web.wsgi.cgi
web.wsgi.runCGl(application)

The application can then be run in a normal CGI webserver.

To test this approach rumweébserver.py’ using python webserver.py in the ‘scripts’ directory and visit
http://localhost:8000/doc/src/lib/wsgi-simple-cgi.py to see a sample CGl WSGI application running.

1.15.2 Writing Applications

It can be slightly complicated to write your own WSGI applications sonkb.wsgi.base provides a sample
class from which you can derive your own application class. The class has the following API:

classBaseApplication ([status:’ZOO OK’], [headers:[(’Content-type’,’text/html’)])

The class defines the following attributes:

environ
A dictionary of environment variables similar ts.environ but also containing entries from the
WSGI server and any middleware being used. &heiron dictionary is the main way your appli-
cation will have access to the environment. You should not need to clearngen

status
A string of the form’error _code messgae’ which can be used to set the HTTP status code
of the application. For exampl200 OK’ for a normal application500 Error’ if there was a
server error.

headers
A list of (field-name, field-value) tuples suitable for use in the WSGI

start _response function. Any headers your application needs to send should be specified
by this list in the order they should be seNte: The default value of theeaders attribute is set

to be[('Content-type’,'text/html’)] in the class constructor, so if you do not want this
HTTP header you should set a different value in the constrcutor or in your application.
The (field-name, field-value) format could be easily made into HTTP header messages

suitable for direct printing:

messages = []
for header in self.headers:
messages.append("%s: %s"%header)

Warning: WSGI applications and middleware should not normally useptive statement in the
same way as in CGI scripts. Instead strings should be sent titpet() method where they will
be returned at the end of execution of the class in accordance with the WSGI specification.

_output
A list of strings to be returned at the end of the application. The class definestingt() = method
which is used to directly append strings_toutput so there should be no need to accesstput
directly.

The class defines the following methods:

start ()
This method should be over-ridden in derived classes to provide your application’s functionality.

output (*text)
Takes one or more strings and appends them ta theput attribute when they will be returned at
the end of program execution to display the program output. For example:

130

Chapter 1. Web Modules

self.output('one’)
self.output(’'one’, 'two’)

Note: If the values are not strings, they are convertes to strings using the builtin fusttfpn .

__call __(environ, start responsg
You should not need to modify this method but is documented here for a complete under-
standing as it provides the functionality which makes derived classes WSGI applications. This
method sets up thenviron attribute and callsstart() . Once start() returns, it calls
start _response(self.status, self.headers) to set the status and headers and returns
self. _output

To create théHello World! example used at the start of the documentation wittBése Application
class we could do the following:

import web.wsgi.base
class Application(web.wsgi.base.BaseApplication):
def start(self):
self.output('Hello World!")
application = Application()

Note: In this example we have used a class instance as the application whereas we previously used a function
definition. Class instances must be initialised.

To use different HTTP headers we could do the following:

application = Application(headers=[(Content-type’,'text/plain’)])

For application to always be treated as having failed we could set the stab@®tdError’

application = Application(status="500 Error’)

To allow be able to set the text of thdello World?’ message from the class constructor we need to modify
the class:

import web.wsgi.base
class Application(web.wsgi.base.BaseApplication):
def __init_ (self, status="200 OK’, headers=[('Content-type’, 'text/html’), text="Hello World!]):
self.text = text

web.wsgi.base.BaseApplication.__init__(self, status, headers)

def start(self):
self.output(self.text)

application = Application(text="Hello World Again!’)

Warning: When deriving your own classes it is important you do not accidently over-write any of the attributes
or methods of the base class, otherwise your class may not function as you intended.

1.15. web.wsgi — Web Server Gateway Interface tools 131

1.15.3 Writing Middleware

Middleware classes usually do one of 3 things:

e Change thenviron dictionary

e Change the application&atus

e Change the HTTeaders

Theweb.wsgi.base provides a clasBaseMiddleware which has methods to allow you to easily accom-
plish each of these things.

classBaseMiddleware (application

applicationshould always be the first parameter to a derived middleware class, but you may also wish to
have other parameters in derived classes to allow the middleware to be configured.

The class defines the following attributes:

application
The WSGI application (or middleware stack) to which this middleware should be added.

The class defines the following methods:

start ()
This method should be over-ridden in derived classes to provide your application’s functionality.

output (*text)
Takes one or more strings and appends them ta theput attribute when they will be returned at
the end of program execution to display the program output. For example:

self.output('one’)
self.output('one’, 'two’)

__call __(environ, start.responsg
You should not need to modify this method but is documented here for a complete understanding as it
provides the functionality which makes derived classes WSGI middleware.

This method intercepts thenviron dictionary as well as thbeaders andstatus parameters
sent by the WSGI server to tistart _response() function. It then sends thenviron dictio-
nary to theenviron() method for modification. Thetatus , headers andexc _info param-
eters are sent to thresponse() method which controls the order in which the different parameters
are modified. Theesponse() method sends the parameters to stetus() , headers and

exc _info() methods for modification. The new values are then returned ta tall __ where

a modified application object is returned.

response (status, headers[,exc;infO:None])
Calls thestatus() , headers andexc _info() methods to modify the respective parameters
then returns the modified values in the ordtatus headersexc_info to the__call __() method.
Can be over-ridden to change the order in which the parameters are modified.

environ (environ
Provides the dictionargnvironfor modification. Must return thenviron dictionary to be passed
on down the middleware chain.

status (statug
Provides thestatusstring for modification. Must return th&tatus string to be passed on down the
middleware chain.

headers (header}
Provides theneaderdist for modification. Must return thbeaders list to be passed on down the
middleware chain.

exc _info (.exc_info)
Provides theexc_info tuple object generated by a previous error (if one exists) for modification. Must
return theexc _info tuple to be passed on down the middleware chain.

132

Chapter 1. Web Modules

transform (outpu)
Used to transform the body of output returned from the previous item in the middleware stack.

Be aware that you may need to have checked content-type headers and change the content length
header if it is set if you intend to change the length of the returned information.

outputis an iterable and an iterable should be returned from the output.

To produce your own middleware class, simply over-ride the appropriate methods in your class derived from the
BaseMiddleware class, remembering to return the value you wish to passed on along the middleware chain. If
you wish to pass information between the various methods, you should set member variables of the classes.

With long middleware chains and functions being passed as parameters down the chain it can get a bit confusing
to keep track of program flow.

Program flow is actually very straightfoward. The first piece of middleware is run first, any changes to the
environ dictionary are passed on to the next piece of middleware and so on down the chain. Once the
start _response function is called thetatus , headers and application output are sent back up the chain

to the server where they are sent to the web browser.

Here is a test application demonstrating middleware and program flow (the headers are not valid HTTP headers
obviously):

#!/usr/bin/env python

import sys; sys.path.append(’../../..I")
import web.wsgi.base, time

class Application(web.wsgi.base.BaseApplication):
def start(self):

self.output(’Environ Order:\n’)
self.environ['Application’] = time.time()
time.sleep(1)
self.neaders.append(('Appliction’,str(time.time())))
self.output('Middlewarel ’,self.environ['Middleware1)
self.output('\n’)
self.output('Middleware2 ’,self.environ['Middleware2'])
self.output('\n’)
self.output(’Application
self.output(’\n’)

’

, self.environ['Application’])

class Middlewarel(web.wsgi.base.BaseMiddleware):
def environ(self, environ):
time.sleep(1)
environ['Middlewarel’] = time.time()
return environ

def headers(self, headers):
time.sleep(1)
headers.append(('Middlewarel’,str(time.time())))
return headers

def transform(self, output):
return output + ['Middlewarel\n’]

class Middleware2(web.wsgi.base.BaseMiddleware):
def environ(self, environ):
time.sleep(1)
environ['Middleware2’] = time.time()
return environ

def headers(self, headers):
time.sleep(1)
headers.append(('Middleware2’,str(time.time())))
return headers

1.15. web.wsgi — Web Server Gateway Interface tools 133

def transform(self, output):
return output + ['Middleware2\n’]

print "Running test..."
application = web.wsgi.runCGIl(Middlewarel(Middleware2(Application())))

The program will not run from a WSGI server because of the incorrect HTTP headers but you can run it from the
command line. The output should look something like this:

Status: 200 OK
Content-type: text/html
Appliction: 1105847968.69
Middleware2: 1105847969.69
Middlewarel: 1105847970.69

Environ Order:

Middlewarel 1105847966.68
Middleware2 1105847967.69
Application 1105847967.69

Transform Order:
Middleware2
Middlewarel

You can see thagnviron is modified byMiddlewarel thenMiddleware2 thenApplication . Headers
and return transforms are made in exactly the opposite order.

At each stage of the application and middleware chain the component can either return an list of strings in one go
or return an iterable.

1.15.4 The PythonWeb Middleware Components

Theweb.wsgi module contains middleware components to make use of all the functionality of the Python Web
Modules.

All PythonWeb WSGI middleware components are classes which take another WSGI middleware component or
an application as the first argument. Middleware components usually add entriestoviteen ~ dictionary so
that the application can use their functionality by using values from the dictionary.

The subsequent arguments configure how the middleware behaves. The documentatiowdbr\sgi.cgi
module is a good starting point.

web.wsgi.cgi — CGl Variable Access

Theweb.wsgi.cgi module provides one clag¥GIl which adds the kelweb.cgi’ to theenviron dictio-

nary. Middleware or applications further down the chain can access CGI variables usually accessed through the
web.cgi object by usingenviron['web.cgi’] . The class takes no arguments.

For example:

134 Chapter 1. Web Modules

import web.wsgi.base, web.wsgi.cgi

class Application(web.wsgi.base.BaseApplication):
def start(self):
if self.environ['web.cgi'l.has_key(test’) and self.environ['web.cgi'|['test’].value == "True”
self.output('<htmI>You visited the URL</html>’)
else:
self.output('<html>Visit URL</html>")

application = web.wsgi.cgi.CGIl(Application())

web.wsgi.database — Database Access
The web.wsgi.database module provides one classDatabase which adds the keys
'web.database.connection’ and’web.database.cursor’ to theenviron dictionary based on

the parameters specified in the class constructor.

environ['web.database.connection’] contains theeonnection object

environ['web.database.cursor’] contains theursor object
Middleware or applications further down the chain can access the database through these objects as follows:

import web.wsgi.base, web.wsgi.cgi

class Application(web.wsgi.base.BaseApplication):
def start(self):

self.output(’<html>")
self.environ['web.database.cursor’].execute(SELECT * FROM test’)
results = self.environ['web.database.cursor’].fetchall()

for result in results:

self.output('<p>%s</p>'%result)
self.output(’</html>")

application = web.wsgi.database.Database(
Application(),

type="MySQLdb’,
database="test’,

web.wsgi.environment — Environment Information

Theweb.wsgi.environment module provides one clagvironment which adds the following informa-
tion to theenviron dictionary based on the parameters specified in the class constructor.

environ['web.environment.name’] A string containing the name of the environment

environ['web.environment.type’] A string containing the type of the environment. This can cur-
rently only be'database’

Middleware or applications further down the chain can access these variables as follows:

1.15. web.wsgi — Web Server Gateway Interface tools 135

import web.wsgi.base, web.wsgi.environment

class Application(web.wsgi.base.BaseApplication):
def start(self):
self.output(’<html>’)
self.output('<p>Name: %s</p>'%self.environ['web.environment.name’])
self.output('<p>Type: %s</p>'%self.environ['web.environment.type’])
self.output(’</html>’)

application = web.wsgi.environment.Environment(
Application(),
name="testEnv’,
type="database’,

web.wsgi.session — Session Handling

The web.wsgi.session module provides one clagession which adds the following information to the
environ dictionary based on the parameters specified in the class constructor.

environ['web.session.driver’] A Driver object as returned byeb.session.driver()

environ['web.session.manager’] A Manager object as returned byeb.session.manager()

environ['web.session.store’] A session Store object as returned by
environ['web.session.manager’].store(app

The web.wsgi.session.Session middleware requires the presence of tHeatabase and

Environment middleware and can be used as shown in the example below:
from web.wsgi import *
class simpleApp(base.BaseApplication):

def printPage(self, title, url, link, url2, link2, data):
self.output(""
<htmlI>
<h1>%s</h1>
<p>%s</p>
<p>%s</p>
<p>%s</p>
</html>""%(title, url, link, url2, link2, data)

def start(self):
Write a simple application
if not self.environ['web.session.manager’].created:
if self.environ['web.cgi'l.has_key('destroy’) and self.environ['web.cgi’]['destroy’].value == 'True’
self.environ['web.session.manager’].destroy(ignoreWarning=True, sendCookieHeaders=False)
self.headers.append(self.environ['web.session.manager’].response_headers[-1])
self.printPage(
'Session Destroyed’,
self.environSCRIPT_NAME’],

‘Start Again’, """
)
else:
self.environ['web.session.manager’].setExpire(self.environ['web.session.manager’].expireTime+5)
data =]
data.append('SessionID: ' +self.environ['web.session.manager’].sessionlD)

data.append('Store Keys: '+str(self.environ['web.session.store’].keys()))

136 Chapter 1. Web Modules

data.append('Store App: '+self.environ['web.session.store’].app)
data.append(’Variablel: ’'+str(self.environ['web.session.store’]['Variablel1'))
data.append(’ExpireTime: ’'+str(self.environ['web.session.manager’].expireTime))
self.printPage(
'Welcome back’,
self.environSCRIPT_NAME’],
Visit Again’,
self.environ[SCRIPT_NAME’]+'?destroy=True’,
'‘Destroy Session’, '<p>Every time you visit this page the expiry time increases 5 second
'</p><p>'join(data)
)
else:
self.environ['web.session.store’|['Variablel’] = 'Python Rules!
self.printPage(
'New Session Started’,
self.environSCRIPT_NAME],
Visit Again’, ”, ",
"Set variablel to 'Python Rules!™
)
Save changes
self.environ['web.database.connection’].commit()

application = error.Error(
database.Database(
environment.Environment(
session.Session(
cgi.CGI(
simpleApp(),
)
app = 'testApp’,
expire = 10,
setupEnvironment = 1
)s
name = 'testEnv’,
storage = ’'database’,
)
adapter = ’snakesql’,
database = ’'wsgi-session’,
autoCreate = 1

You can test this example by running the WSGI servexcripts/WSGIServer.py’ and visiting
http://localhost:8000/session

web.wsgi.error — Error Handling

Error handling middleware is designed to catch any exception which happened lower down the execution chain and
handle the exception in an appropriate way. The WSGI servemf Gl application will handle any exception

left uncaught, usually by displaying an HTML page with a message such as "Server Error 500” so error handling
middleware is not essential.

The web.wsgi.error module provides one clagsror which does not alter thenviron dictionary but
does catch any exception and print an HTML display of the traceback information. It can be used like this:

1.15. web.wsgi — Web Server Gateway Interface tools 137

import web.wsgi.base, web.wsgi.error

class Application(web.wsgi.base.BaseApplication):
def start(self):
raise Exception('Test error is caught and displayed’)

application = web.wsgi.error.Error(
Application(),
)

You can also create your own error handling class by deriving a middleware class from
web.wsgi.error.Error . In this example a text traceback is displayed instead:

import web.wsgi.base, web.wsgi.error

class simpleApp(web.wsgi.base.BaseApplication):
def start(self):
raise Exception('Test Exception’)

class myError(web.wsgi.error.Error):
def error(self):
"Generate an error report"
return (
200 Error Handled’,
[(Content-type’,'text/html’)],
[web.error.info()]

)

application = myError(
simpleApp(),
)

Theerror method should return the valussitus , headers , iterable

You can test this example by running the WSGI servescripts/WSGIServer.py’ and visiting
http://localhost:8000/auth

Note: We do not need th#!/usr/bin/env python line or modifications teys.path for WSGI appli-
cations since the relevant objects are imported from the files, the files are not executed as scripts.

Errors along the lines of the one shown below may be due to incorrectly formed headers with tuples of the wrong
length and can be hard to track down.

ValueError: unpack list of wrong size
args = (‘unpack list of wrong size’,)

web.wsgi.auth — User Permission Handling

Auth handling middleware determines which user is currently signed in and providssraobject which has
information about that user. Auth sign in functionality is left to the application but is made extremely easy through
the use of an sign in handler class.

Theweb.wsgi.auth module provides one clagsith which adds the following information to trenviron
dictionary based on the parameters specified in the class constructor.

environ['web.auth.username’] and environ[REMOTE _USER’] The username of the user
who is currently signed in.

138 Chapter 1. Web Modules

environ['web.auth.user’] A User for the user who is currently signed in.

environ['web.auth.session’] An AuthSession object as returned bweb.auth.session()
used to manage whether a user is currently signed in or not.

environ['web.auth.manager’] A session UserManager object as returned by
web.auth.manager() used to manage applications and users.

The example below demonstrates how to check if a user is signed in and if they are not signed in, provide them
with a sign in form and handle the submissions until they are signed in.

import sys; sys.path.append(../")
from web.wsgi import *

Sign In Application
class simpleApp(base.BaseApplication):
def start(self):
Create some sample data
if not self.environ['web.auth.manager’].applicationExists('app’):
self.environ['web.auth.manager’].addApplication('app’)
self.environ['web.auth.manager’].addUser(
‘john’,
‘bananas’,
‘John’,
"Smith’,
‘johnsmith@example.com’,
)
self.environ['web.auth.manager’].setAccessLevel(john’, 'app’, 1)
See if anyone is signed in
if self.environ.has_key('web.auth.user’):
self.output(’Already signed in’)
else:
Try to login
import web.auth.handler.signin
signinHandler = web.auth.handler.signin.SigninHandler(
session = self.environ['web.auth.session’],
manager = self.environ['web.auth.manager’],
cgi = self.environ['web.cgi’],
)
error = signinHandler.handle()
if error:
Display the error form
self.output('<html><body><h1>Please Sign In</h1>%s</body></html|>'%error)
else:
We have just signed in
self.output(’Signed in successfully’)
self.environ['web.database.connection’].commit()

Middleware Setup
application = error.Error(
database.Database(
environment.Environment(
session.Session(

cgi.CGI(
auth.Auth(
simpleApp(),
app="test’,
setupEnvironment=1,
expire=30,
idle=10,
)
)

app = 'testApp’,

1.15. web.wsgi — Web Server Gateway Interface tools 139

expire = 1000,
setupEnvironment = 1,
)
name = 'testEnv’,
storage = ’'database’,
)
adapter = ’snakesql’,
database = 'wsgi-auth’,
autoCreate = 1,

You can test this example by running the WSGI servescripts/WSGIServer.py’ and visiting
http://localhost:8000/auth

140 Chapter 1. Web Modules

APPENDIX
A

Reporting Bugs

Please email bugs at pythonweb.org

141

142

APPENDIX
B

History and License

B.1 History of the software

Python Web Modules are released under the GNU LGPL

143

144

D

datetime , 12

W

web, 1

web.auth , 2

web.database , 15
web.database.object , 58
web.environment , 89
web.error , 82

web.form , 90

web.form.field.basic ,93
web.form.field.extra , 96
web.form.field.typed , 95

web.image , 100
web.mail , 102
web.session , 104
web.template , 118, 122
web.wsgi , 125

web.xml , 124

MODULE INDEX

145

146

Symbols

__call __() (method), 131

__call __() (callable method), 132
__getitem __() (method), 78, 80, 92
__getitem __() (bool method), 55
_function() (method), 53

_output (string attribute), 130

A

accessLevel (String attribute), 6
addAction() (method), 92
addApplication() (method), 11
addColumn() (method), 79

addField() (method), 92
addMultiple() (method), 79
addRelated() (method), 79
addSingle() (method), 79
addTable() (method), 78

addUser() (method), 11

app (String attribute), 117

application (dictionary attribute), 132
applicationExists() (method), 11
apps() (method), 11

AuthManager (class in web.auth), 11
AuthSession (class in web.auth), 11

B

BaseApplication (class in web.wsgi), 130
baseCursor (attribute), 50
BaseMiddleware (class in web.wsgi), 132
baseType (attribute), 56

C

Checkbox (class in web.form.field.basic), 94

CheckBoxGroup (class in web.form.field.basic),

95

childTables (list attribute), 55
cleanup() (method), 116
cleanupProbability (Float attribute), 115
close() (method), 50
code() (String method), 88
Column (class in web.database), 55
column()

method, 45, 54

bool method, 55

INDEX

column (QueryBuilder attribute), 81
columnExists()

method, 80

bool method, 55
columns() (method), 80
columns (list attribute), 55

completeAuthEnvironment() (Bool
method), 10
completeEnvironment() (method), 90

completeSessionEnvironment() (Bool
method), 114
connect() (in module web.database), 17, 49
connection (attribute), 50
context (Integer attribute), 87
Converter (class in web.database), 56
converter (attribute), 56
cookie (Dict attribute), 115
cookieSessionID() (String method), 116
count() (method), 47,54
create()
method, 80
cursor method, 46, 53
String method, 115
createAuthEnvironment()
createEnvironment()
createSessionEnvironment()
114
createTables() (method), 78
cursor() (in module web.database), 19, 50
cursor (cursor attribute), 79

D

Database (class in web.database.object), 78, 79
databaseToValue() (method), 56
date

class in datetime, 12

String attribute, 87
datetime

class in datetime, 13

extension modulel2

module, 12
day (Integer attribute), 12, 13
debug() (String method), 88
default (attribute), 56
delete()

method, 80, 117

(' method), 10
(method), 90
(method),

147

cursor method, 44, 53
deleteCookie() (method), 116
deleteCookieString() (method), 116
description() (String method), 94
destroy() (String method), 115
dict() (method), 79, 80, 82, 92
Driver

class in web.auth, 10

class in web.session, 114
driver()

in module web.auth, 10

in module web.environment, 90

in module web.session, 113
drop()

method, 80

cursor method, 47, 53

dropTables() (method), 78
E
email (String attribute), 6

empty() (method), 117
encode() (in module web), 2
environ() (dictionary method), 132
environ (dictionary attribute), 130
EnvironmentDriver (class
web.environment), 90

error() (String method), 94
error

Error tuple attribute, 87

String attribute, 115
Errorinformation (class in web.error), 87
errorType (Error attribute), 87
errorValue (String attribute), 87
exc _info() (Exception method), 132
execute() (method), 51
executemany() (method), 51
exists() (method), 80, 116
expire (Integer attribute), 115

export() (method), 50

F

fetchall() (method), 51
fetchone() (method), 51

Field (class in web.form.field.basic), 93
field() (method), 92
File (class in web.form.field.basic), 95
firstname (String attribute), 6
Form (class in web.form), 92
form()
method, 80
String method, 81
format (String attribute), 87
frozen()
method, 93
String method, 94

G

genSessionID() (String method), 115

get) (method), 117
getAccessLevel()
getAccesslLevels()

(method), 12
(' method), 12

getEmail() (method), 12
getFirstname() (method), 11
getPassword() (method), 11
getSurname() (method), 11
H
handle() (in module web.error), 84
has _key()

method, 79

bool method, 55
header() (in module web), 1
headers() (list method), 132
headers (list attribute), 130
Hidden (class in web.form.field.basic), 94
hidden()
method, 93
String method, 94
hour (Integer attribute), 13
html()
method, 93
String method, 94
htmi2tuple() (in module web.image), 100

info (attribute), 50
init() (method), 78
Input (class in web.form.field.basic), 94
insert()
method, 80
cursor method, 41, 52

insertMany() (cursor method), 52
isoformat() (method), 14
isRelated() (method), 81

items() (method), 79

K

key (attribute), 56
keys() (method), 79

L

level (Dict attribute), 6

load() (Bool method), 115
M
mail() (in module web.mail), 102

Manager (class in web.session), 114
manager()

in module web.auth, 11

in module web.session, 114
max() (method), 47,53, 81
Menu (class in web.form.field.basic), 95
microsecond (Integer attribute), 13
min() (method), 47, 53, 81
minute (Integer attribute), 13

148

Index

month (Integer attribute), 12, 13

N

name() (String method), 94
name

attribute, 55

String attribute, 79

string attribute, 55
now() (datetime method), 13

O

order() (method), 40, 54
ouput() (String method), 87
output() (method), 79, 130, 132

P

parentTables (list attribute), 55
parse() (in module web.template), 118
Password (class in web.form.field.basic), 94
password (String attribute), 6
populate()

method, 92

None method, 94
position (attribute), 56
primaryKey (string attribute), 55
pythonVersion (String attribute), 87

R

RadioGroup (class in web.form.field.basic), 95
relate() (method), 81
remove() (method), 92
removeApplication()
removeAuthEnvironment()
removeEnvironment()
removeSessionEnvironment()
114
removeUser() (method), 11
required (attribute), 56
Reset (class in web.form.field.basic), 94
response() (sequence method), 132
response _headers (List attribute), 115
Row(class in web.database.object), 81
row() (method), 80
rowExists() (' method), 80
rowid (Integer attribute), 82
runWebServer()

S

second (Integer attribute), 13

seed (String attribute), 115

Select (class in web.form.field.basic), 95
select() (method), 38, 51, 80
sendCookieHeaders() (method), 116
sent _headers (List attribute), 115
sessionID (String attribute), 115
sesssion() (in module web.auth), 10
set() (method), 117

(' method), 11
(method), 10
(method), 90
(method),

(in module web.template), 122

setAccessLevel() (method), 12
setCookie() (' method), 116
setCookieString() (method), 116
setEmail() (method), 12
setError() (String method), 94
setExpire() (method), 116
setFirstname() (method), 11
setPassword() (method), 11
setSurname() (method), 11
signin() (method), 11
signOut() (method), 11
sql (attribute), 50
sqlQuotes (string attribute), 56
sqlToValue() (method), 56
start()

method, 130, 132

in module web.auth, 9

in module web.session, 117
status() (string method), 132
status (string attribute), 130
Store (class in web.session), 117
store() (Store Object method), 115
strftime() (method), 14
strip() (in module web.template), 122
Submit (class in web.form.field.basic), 94
surname (String attribute), 6

T

Table (class in web.database), 55
table()
method, 78
in module web.template, 123
table (attribute), 56
tablesExist() (method), 78
templateDict() (method), 93
TextArea (class in web.form.field.basic), 95
time (class in datetime), 12

timetuple() (method), 14
traceback() (String method), 88
transform()

in module web.xml, 124

Iterable method, 133
type

attribute, 55

string attribute, 56

U

unique (attribute), 56
unrelate() (method), 81
update()

method, 81

cursor method, 43, 52
User (class in web.auth), 5
userExists() (method), 11
userinfo() (method), 11
username() (method), 11
username (String attribute), 5
users() (method), 12

Index

149

Vv

valid()

method, 116

Bool method, 92

True or False method, 94
value

List attribute, 95

String attribute, 94
values() (method), 79
valueToDatabase() (method), 56
valueToSQL() (method), 56

W

web (extension module),
web.auth

extension module?

module, 2
web.database (extension module}l5
web.database.object (extension module 8
web.environment

extension moduleg9

module, 89
web.error
extension moduleg2
module, 82
web.error.error() (in module web.error), 87
web.error.info() (in module web.error), 84
web.form (extension module0
web.form.field.basic (extension module),
93
web.form.field.extra (extension module),
96
web.form field.typed (extension module),
95

web.image (extension module)l00
web.mail (extension module)102
web.session (extension module}104
web.template (extension module}1 18 122
web.wsgi (extension module)125

web.xml (extension module} 24

where() (method), 40, 54

wrap() (in module web.template), 122

Y

year (Integer attribute), 12, 13

150 Index

	1 Web Modules
	1.1 web --- Web modules
	1.2 web.auth --- Easy to use authorisation and user management system
	1.2.1 Background Information
	1.2.2 Drivers
	1.2.3 The Environment
	1.2.4 Obtaining Access to the Auth Session Information
	1.2.5 Administering The Auth Environment
	Adding Applications
	Adding Users
	Setting Access Levels

	1.2.6 Checking Who Is Signed In
	1.2.7 Automatically Handling Sign In Attempts
	1.2.8 Using Roles
	1.2.9 Examples
	1.2.10 Function Reference
	The start() Function
	Driver Objects
	AuthSession Objects
	AuthManager Objects

	1.3 datetime --- Compatibility code providing date and time classes for Python 2.2 users
	1.3.1 Module-Level Functionality
	1.3.2 Compatibility with Python 2.3 and above

	1.4 web.database --- SQL database layer
	1.4.1 Background
	1.4.2 Introduction
	Understanding Field Types

	1.4.3 Connecting to a Database
	1.4.4 Cursor Options
	1.4.5 Executing SQL
	1.4.6 Retrieving Results
	1.4.7 Transactions, Rollbacks and Committing Changes
	1.4.8 Special Characters
	In Python
	In SQL
	The Easy Way

	1.4.9 SQL Reference
	The SELECT Statement
	The WHERE Clause
	The INSERT INTO Statement
	The UPDATE Statement
	The DELETE Statement
	ORDER BY
	AND & OR
	NULL Values
	CREATE
	DROP Table
	FOREIGN KEY and Joins

	1.4.10 Cursor Abstraction Methods
	Selecting Data
	Inserting Data
	Updating Data
	Deleting Data
	Creating Tables
	Dropping Tables
	Functions

	1.4.11 Supported Databases
	MySQL
	SQLite
	ODBC

	1.4.12 Example Code
	1.4.13 API Reference
	Module Interface
	Connection Objects
	Cursor Objects
	Table Objects
	Column Objects
	Converter Objects

	1.4.14 Developer's Guide
	Implementing the Classes
	Creating the Dictionary

	1.4.15 Tools Under Development
	Interactive Prompt
	Object-Relational Mapper
	Web Based Admin

	1.4.16 Future Additions

	1.5 web.database.object --- An object relation mapper built on the web.database and web.form modules
	1.5.1 Introduction
	Requirements
	Compared To Other Database Wrappers

	1.5.2 Introductory Example
	Full Code Listing
	Using Alternative Keys
	Available Columns

	1.5.3 One-To-Many Mappings
	Full Code Listing

	1.5.4 Many-To-Many Mappings
	Full Code Listing

	1.5.5 Building Queries
	How It Works
	Supported Operators
	Supported Functions
	Full Code Listing

	1.5.6 Creating Forms/Tables
	Full Code Listing

	1.5.7 Creating Tables by Defining Classes
	1.5.8 Other Useful Features
	1.5.9 Class Reference
	The Database Object
	The Table Object
	The Row Object

	1.5.10 Future

	1.6 web.error --- Enhanced error handling based on the cgitb module
	1.6.1 Basic Usage
	1.6.2 Using The info() Function
	1.6.3 Using The handler() Function
	1.6.4 Using The error() Function
	1.6.5 Creating Custom Handlers
	1.6.6 Example

	1.7 web.environment --- Tools for seting up an environment
	1.7.1 Example
	1.7.2 API Reference

	1.8 web.form --- Construction of persistant forms/wizards for HTML interfaces
	1.8.1 Introduction
	1.8.2 Form Objects
	1.8.3 Creating Custom Forms
	1.8.4 Fields
	web.form.field.basic --- Various fields for use with web.form
	web.form.field.typed --- Typed fields for use with web.form and web.database.object
	web.form.field.extra --- Extra fields for use with web.form

	1.8.5 Basic Fields Example
	1.8.6 Typed Fields Example

	1.9 web.image --- Create and manipulate graphics including JPG, PNG, PDF, PS using PIL
	1.9.1 web.image.graph --- Create graphs

	1.10 web.mail --- Simple function to send email using email
	1.10.1 Example

	1.11 web.session --- Persistent storage of session and automatic cookie handling
	1.11.1 Background Information
	The HTTP Protocol is Stateless
	Session IDs
	Information Storage
	Multiple Applications
	The HTTP Protocol and Cookie Handling

	1.11.2 Session Module Overview
	1.11.3 Drivers
	1.11.4 The Environment
	1.11.5 Obtaining a Session
	1.11.6 Multiple Applications and Stores
	1.11.7 Using Stores
	1.11.8 Using the session.start() function
	1.11.9 Managing Sessions
	Checking Session Existence or Validity
	Destroying Sessions
	Cleaning Up Expired Sessions
	Changing the Expire Time of a Session

	1.11.10 Custom Cookie Handling
	1.11.11 Web Server Gateway Interface Middleware
	1.11.12 Implementing a new Driver
	1.11.13 Example
	1.11.14 API Reference
	Driver Objects
	Manager Objects
	Store Objects
	The start() Function

	1.12 web.template --- For the easy display of data as HTML/XML
	1.12.1 Cheetah Template
	1.12.2 XYAPTU Templating
	1.12.3 Dreamweaver MX

	1.13 web.util --- Useful utility functions that don't fit elsewhere
	1.14 web.xml --- XSLT Transform
	1.15 web.wsgi --- Web Server Gateway Interface tools
	1.15.1 Introduction
	What is a WSGI application?
	What Are Middleware Components?
	Callables, Classes or Functions?
	Running WSGI Applications
	The PythonWeb WSGI Server
	The runCGI() Method

	1.15.2 Writing Applications
	1.15.3 Writing Middleware
	1.15.4 The PythonWeb Middleware Components
	web.wsgi.cgi -- CGI Variable Access
	web.wsgi.database -- Database Access
	web.wsgi.environment -- Environment Information
	web.wsgi.session -- Session Handling
	web.wsgi.error -- Error Handling
	web.wsgi.auth -- User Permission Handling

	A Reporting Bugs
	B History and License
	B.1 History of the software

	Module Index
	Index

