
Module Reference

James Gardner

January 31, 2005

http://www.pythonweb.org

docs at pythonweb.org

Copyright c© 2001, 2002, 2003, 2004, 2005 James Gardner. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

This manual provides a detailed reference of each of the modules which make up the Python Web Modules.

For an overview of the modules, their purpose and licence seeOverview of the Python Web Modules

Warning: This version of the modules has undergone many changes and should be considered a development
release, likely to contain some bugs.

CONTENTS

1 Web Modules 1
1.1 web — Web modules . 1
1.2 web.auth — Easy to use authorisation and user management system. 2
1.3 datetime — Compatibility code providing date and time classes for Python 2.2 users. 12
1.4 web.database — SQL database layer. 15
1.5 web.database.object — An object relation mapper built on theweb.database and

web.form modules. 58
1.6 web.error — Enhanced error handling based on thecgitb module 82
1.7 web.environment — Tools for seting up an environment. 89
1.8 web.form — Construction of persistant forms/wizards for HTML interfaces. 90
1.9 web.image — Create and manipulate graphics including JPG, PNG, PDF, PS usingPIL 100
1.10 web.mail — Simple function to send email usingemail . 102
1.11 web.session — Persistent storage of session and automatic cookie handling. 104
1.12 web.template — For the easy display of data as HTML/XML. 118
1.13 web.util — Useful utility functions that don’t fit elsewhere. 122
1.14 web.xml — XSLT Transform . 124
1.15 web.wsgi — Web Server Gateway Interface tools. 125

A Reporting Bugs 141

B History and License 143
B.1 History of the software. 143

Module Index 145

Index 147

i

ii

CHAPTER

ONE

Web Modules

The Web Modules are a series of useful librares for building web applications without the need to learn a frame-
work.

1.1 web — Web modules

Theweb module provides some basic utility functions and objects which are used throughout the Web Modules.

Version Information

Theweb module has the following variables:

web.version info A tuple similar tosys.version info in the form (major version, minor
version, revision, release candidate, status)

web.version The version as a string eg’0.4.0rc1’

web.name The name of the modules as a string

web.date The date of the release as a string in the format’yyyy-mm-dd’ .

web.status The release status of the code. For example’beta’

Useful Objects

Theweb module provides the following objects:

web.cgi An object based on the cgi.FieldStorage() object.

The web.cgi object is used to access CGI environment variables such as information submitted from
forms or appended to a URL or information about the user’s browser.web.cgi provides a dictionary-like
interface to all the sumbitted CGI variables.

Warning: Creating acgi.FieldStorage object can destroy data that would be used in subsequent
creating subsequentcgi.FieldStorage objects so you should only use theweb.cgi object which
will be created first in order to avoid this problem.

See Also:

cgi Module Documentation
(http://www.python.org/doc/current/lib/module-cgi.html)

The cgi module documentation distributed with Python has more information about
cgi.FieldStorage objects and a full functional specification.

Useful Functions

header ([type=’text/html’])
Returns a Content-type HTTP header

typeThe content-type to output

1

encode (html[, mode=’url’])
Encode a string for use in an HTML document

htmlThe string to encode

modeIf modeis ’url’ thehtml string is encoded for use in a URL. Ifmodeis ’form’ html is encoded
for use in a form field.

Warning: The HTTP protocol doesn’t specify the maximum length of URLs but to be absolutely
safe try not to let them be longer than 256 characters. Internet Explorer supports URLs of up to
2,083 characters. Any long strings are better off encoded to be put as hidden values in a form with
method="POST" rather than encoded and embedded in URLs. Information sent usingPOSTis sent
in the HTTP header where there is no limit to the length.

Another reason not to encode larege amounts if information in URLs is that doing so may also result
in strange behaviour in certain browsers.

1.2 web.auth — Easy to use authorisation and user management
system

Theweb.auth module provides methods for allowing multiple users multiple access levels to multiple applica-
tions using a single login. It offers a poweful, flexible and simple way to restrict or manage access to different
parts of your code.

1.2.1 Background Information

The web.auth module performs three main tasks and can be thought of as three separate parts in the same
module. These tasks are:

• Check whether a user is signed in and has permission to use an application.

• Provide tools to enable new users and applications to be setup and modified.

• Provide a mechanism where login attempts can be handled through a web based interface.

In order to fulfil these tasks four different types of object are provided by theweb.auth module. These are:

Driver These provide the interface to the storage medium for theAuthSession andAuthManager objects.
For example theDatabaseAuthDriver object is used to allow auth information to be stored in SQL
databases.

AuthSession These objects use theweb.session session module to store and manage information about
who is currently signed in.

AuthManager These are the objects are used to manage the application and user information. For example to
add applications and users, test if applications or users exist and change passwords.

Handlers These objects are found in theweb.auth.handlers sub package and are designed to help to auto-
mate tasks such as providing a sign in form, checking details and signing in users to reduce the code needed
to be written for each application.

If you simply want to password protect a CGI script there is also aweb.auth.start() function to handle
everything for you, but most of the time you will want control over the process yourself.

If you simply want to get started using the module quickly there is an example later on in the documentation
demonstrating some important features and a full API reference.

2 Chapter 1. Web Modules

1.2.2 Drivers

The web.auth module is designed so that the data can be stored in lots of different ways through the use of
different drivers. Currently only a database storage driver exists which allows session information to be stored
in any relational database supported by theweb.database module. Theweb.database module includes
SnakeSQL, a pure Python database which works like a library, so you can use theweb.session module even
if you do not have access to another relational database engine.

To use theAuthSession andAuthManager objects we need to obtain a validDriver object. This is done
as follows:

import web, web.database, web.auth

connection = web.database.connect(’mysql’, database=’test’)
cursor = connection.cursor()

driver = web.auth.driver(’database’, environment=’testEnv’, cursor=cursor)

In this example we are using a database to store the session information so we setup a database cursor
namedcursor as described in the documentation for theweb.database module and use it to pass to the
web.session.driver() method.

The environmentparameter is the name of the environment to be used (see the next section for information on
environments).

1.2.3 The Environment

Environments are described in the documentation for theweb.environment module but are effectively groups
of applications which share users and sessions. Specifically the name specified inenvironmentparameter of the
web.auth.driver() function is the name prepended to all database tables using that environment so that
multiple environments can be used in the same database (useful if you are using a shared web host and only have
access to one database). It is also the name used to identify the session ID in any cookies theweb.session
module uses.

In order to use theweb.auth module the environment must be setup correctly. In the case of database drivers
this simply means the relevant session tables must exist. If you intend to use theweb.session module
you can setup the environments for theweb.auth and web.session modules at the same time using the
web.environment module. If you just want to setup an auth environment you can so do through theDriver
object.

OurDriver object from the previous section is nameddriver and we have already created aweb.database
cursor namedcursor . Have a look at this example:

if not driver.completeAuthEnvironment():
driver.removeAuthEnvironment(ignoreErrors=True)
errors = driver.createAuthEnvironment()
if errors:

raise Exception(’The environment was not sucessfully created’)
connection.commit()

If none or only some of the tables are present we drop all the existing tables (ignoring errors produced because of
missing tables) losing any information they contain and recreate all the tables.

Note: We need to check to see if any errors occured since they are not automatically raised.

We also need to commit our changes to the database so that they are saved usingconnection.commit() .

1.2. web.auth — Easy to use authorisation and user management system 3

1.2.4 Obtaining Access to the Auth Session Information

Theweb.auth module use aweb.seesion store named’auth’ to hold information about the current signed
in user. This means we need to setup theweb.seesion objects before we can access the information. See the
web.session module for full details.

Obtain a session store
import web.session
driver = web.session.driver(’database’, environment=’testEnv’, cursor=cursor)

if not driver.completeSessionEnvironment():
driver.removeSessionEnvironment(ignoreErrors=True)
driver.createSessionEnvironment()

manager = web.session.manager(driver=driver)
if not manager.load():

manager.create()
store = manager.store(’auth’)

Once we have a valid session store we can create aAuthSession object as follows:

authSessionManager = web.auth.session(store, expire=0, idle=10)

Theweb.auth.session() function takes a number of parameters and is documented at the end of this section.
In particularexpireis the maximum length of time a user can be signed in for. If this is 0 it means the user can be
signed in indefinately (although practically the session from theweb.session itself will not last forever).idle
is the maximum length of time a user can be signed in for without visiting the site. Again a value of 0 means there
is no limit.

1.2.5 Administering The Auth Environment

In order to access application and user information you need to create aAuthManager object. This can be done
as follows:

driver = web.auth.driver(’database’, environment=’testEnv’, cursor=cursor)
authManager = web.auth.manager(driver=driver, app=’app’)

Once the object is created you can use its methods to add new users and applications.

Note: As well as creating an applicaiton and a user youmust link the two by using thesetAccessLevel()
method so that the user has access to the application.

Adding Applications

To add an application to the auth environment you use theaddApplication() method of theauthManager
object returned byauth.setup() .

For example, using theauthManager object created in the example above:

authManager.addApplication(’app’)

4 Chapter 1. Web Modules

Adding Users

To add a user to the auth environment you use theaddUser() method of theauthManager object returned
by auth.setup() .

TheaddUser() method takes the parametersusername, password, firstname, surname, email. Only username
andpasswordare required.

using theauthManager object created in the example above:

authManager.addUser(’test’, ’123’)
authManager.addUser(

’john’,
’bananas’,
’John’,
’Smith’,
’johnsmith@example.com’

)

Setting Access Levels

You can set the access level for a particular user or applicaiton using thesetAccessLevel() method of the
authManager object returned byauth.setup() .

Access levels should be positive integers. An access level of0 means the user doesn’t have access to the particular
application.

For example:

authManager.setAccessLevel(’john’, ’app’, 1)

1.2.6 Checking Who Is Signed In

Once we have created theauthSsessionManager we can get the username of the current signed in user using
authSsessionManager.username() . This method returns an empty string if no user is signed in.

username = authSsessionManager.username()

Usernames are case insensitive but are always stored in the driver as lowercase.

We then need to double check the user exists. We do this using theAuthManager object created in the section
on administering the auth environment.

if username and authManager.userExists(username):
user = authManager.getUser(username)
print ’Username %s is signed in’%user.username

The object returned by theauthManager.getUser() method has the following properties:

classUser
Stores read only information about a user. You cannot set the values of the user with this class. Instead you
should use the manager object described earlier in the documentation.

username
The username of the user. Usernames are case insensitive but are always stored and returned as low-
ercase. This means that if you want to compare a username from a database with a value entered

1.2. web.auth — Easy to use authorisation and user management system 5

by a user, you should first convert the value entered by a user to lowercase like this:username =
username.lower()

password
The user’s password, 1-255 characters.

firstname
The user’s firstname, 1-255 characters. Optional

surname
The user’s surname, 1-255 characters. Optional

email
The user’s email address, max 255 characters. Optional

level
The access levels for the applications the user has access to as a dictionary with application names as
keys.

accessLevel
The access level the user has to the current application.

1.2.7 Automatically Handling Sign In Attempts

Sign in attempts can be automatically handled using theweb.auth module’s handlers. TheSignInHandler
object takes two parameters,sessionandmanagerwhich should be validAuthSession andAuthManager
objects respectively.

TheSignInHandler object has one methodhandle() which returns a form if there is a problem orNone
if the user has been signed in. TheSignInHandler object has one attribute,status which is a constant
specifying the current sign in status.

Here is an example.

Try to login
import web.auth.handler.signIn
signInHandler = web.auth.handler.signIn.SignInHandler(

session = authSession,
manager = authManager,

)
form = signInHandler.handle()
if form:

Display the error form
print ’<html><body><h1>Please Sign In</h1>%s<p>%s</p></body></html>’%form

else:
We have just signed in
print ’Signed in successfully’

1.2.8 Using Roles

Insetead of using auth levels, you might prefer to use roles. For example you could havebasicUser and
administrator as different roles. This can be emulated using bitwise operations. Thanks to Cecil Westerhof
for pointing this out. Consider the variables below:

basicUser = 1
administrator = 2
role3 = 4
role4 = 8

6 Chapter 1. Web Modules

Someone withbasicUser andadministrator would have accessLevel 5. Someone withbasicUser ,
administrator androle3 would have accessLevel 11.

To determine if someone has access to a particular role you can evaluateroleX &AccessLevel . If the result
is True the user has access to the particular role. For example to determine if a user is an administrator we could
do the following:

if administrator & user.accessLevel:
print "User is an administrator"

else:
print "User is not an administrator"

1.2.9 Examples

Putting together everything in the previous sections gives us this full application:

#!/usr/bin/env python

"""Auth Example. Username=john and Password=bananas (Case sensitive)"""

show python where the modules are
import sys; sys.path.append(’../’); sys.path.append(’../../../’)
import web.error; web.error.enable()
import web, web.database

Setup a database connection
connection = web.database.connect(

adapter="snakesql",
database="webserver-auth",
autoCreate = 1,

)
cursor = connection.cursor()

Obtain a session store
import web.session
driver = web.session.driver(’database’, environment=’testEnv’, cursor=cursor)

if not driver.completeSessionEnvironment():
driver.removeSessionEnvironment(ignoreErrors=True)
driver.createSessionEnvironment()

manager = web.session.manager(driver=driver)
if not manager.load():

manager.create()

Obtain Auth objects
import web.auth
authSession = web.auth.session(manager.store(’auth’), expire=0, idle=10)
driver = web.auth.driver(’database’, environment=’testEnv’, cursor=cursor)
authManager = web.auth.manager(driver=driver, app=’app’)
if not driver.completeAuthEnvironment():

driver.removeAuthEnvironment(ignoreErrors=True)
driver.createAuthEnvironment()
authManager.addApplication(’app’)
authManager.addUser(

’john’,
’bananas’,
’John’,
’Smith’,
’johnsmith@example.com’,

1.2. web.auth — Easy to use authorisation and user management system 7

)
authManager.setAccessLevel(’john’, ’app’, 1)

Get the username of the current logged in user from the session
print web.header()
username = authSession.username()
if username and authManager.userExists(username):

user = authManager.getUser(username)
print ’Username %s is signed in’%user.username

else:
Try to login
import web.auth.handler.signIn
signInHandler = web.auth.handler.signIn.SignInHandler(

session = authSession,
manager = authManager,

)
form = signInHandler.handle()
if form:

Display the error form
print ’<html><body><h1>Please Sign In</h1>%s</body></html>’%form

else:
We have just signed in
print ’Signed in successfully’

connection.commit()
connection.close()

You can test this example by starting the test webserver in ‘scripts/webserver.py’ and visiting
http://localhost:8080/doc/src/lib/webserver-web-auth.py on your local machine. The username isjohn and the
password isbananas .

A simpler version using theweb.auth.start() function is here:

#!/usr/bin/env python

"""Auth Example. Username=john and Password=bananas (Case sensitive)"""

show python where the modules are
import sys; sys.path.append(’../’); sys.path.append(’../../../’)
import web.error; web.error.enable()
import web, web.database

Setup a database connection
connection = web.database.connect(

adapter="snakesql",
database="webserver-auth-simple",
autoCreate = 1,

)
cursor = connection.cursor()

import web.auth

If the auth environment is created, setup some information
def setup(userManager):

userManager.addApplication(’app’)
userManager.addUser(

’john’,
’bananas’,
’John’,
’Smith’,
’johnsmith@example.com’,

)
userManager.setAccessLevel(’john’, ’app’, 1)

8 Chapter 1. Web Modules

Create the auth objects
error, user = web.auth.start(

app=’test’,
environmentName=’testEnv’,
environmentType=’database’,
cursor = cursor,
expire=10,
setupSessionEnvironment=1,
setupAuthEnvironment=1,
setup = setup, # using the setup function above
stickyData = {’testVar’:’True’},
action = ’webserver-web-auth-simple.py’,
redirect = ’/’

)
print some output
if error:

print error # Error contains a form to display to allow users to sign in
else:

print ’User %s is signed in.’ % user.username

connection.commit()
connection.close()

You can test this example by starting the test webserver in ‘scripts/webserver.py’ and visiting
http://localhost:8080/doc/src/lib/webserver-web-auth-simple.py on your local machine. The username isjohn and
the password isbananas .

1.2.10 Function Reference

The start() Function

Theweb.auth.start() function has the following parameters:

start (app, environmentName[, environmentType=’database’][, sessionManager=None][, expire=0][,
idle=0][, setupSessionEnvironment=0][, setupAuthEnvironment=0][, template][, templateDict =][,
setup = None][, action = ”][, stickyData =][, redirect=None][, **environmentParams])

Warning: Because more options may be specified in future versions of this function you should not rely on
the order of these parameters. Instead they should be specified with the parameter name and an= sign as is
used in the examples in this documentation.

appThe name of the application.

environmentNameThe name of the environment

environmentTypeThe type of environment, currently can only be’database’ .

**environmentParamsAny other parameters needed to correctly specify the environment. For example, if
you are using a’database’ environment type you will also need to specifycursor.

sessionManagerA valid web.session manager object. If not specified, one is created using the default
options for a CGI environment.

expireAn integer specifying the number of seconds before the user is signed out. A value of 0 disables the
expire functionality and the user will be signed in until they sign out.Note: If the underlying session
expires, the cookie is removed or the sign in idles before the expire time specified inexpirethe user
will be signed out.

idleAn integer specifying the maximum number of seconds between requests before the user is automati-
cally signed out. A value of 0 disables the idle functionality allowing an unlimited amount of time
between user requests.Note: If the underlying session expires, the cookie is removed or the sign in
expires before the idle time specified inidle the user will be signed out.

setupSessionEnvironmentWhether to automatically setup a session environment if one is not already
present. Warning: If set to True and only some of the required tables are present in the envi-
ronment, all the session tables will be removed and recreated, losing all the contents. Currently no
checking of whether the tables contain the correct fields is done.

1.2. web.auth — Easy to use authorisation and user management system 9

setupAuthEnvironmentWhether to automatically setup an auth environment if one is not already present.
Warning: If set toTrue and only some of the required tables are present in the environment, all the
auth tables will be removed and recreated, losing all the contents. Currently no checking of whether
the tables contain the correct fields is done.

templateAn HTML template in which to display the form. Must have %(form)s somewhere in the template.

templateDictA dictionary of other variables to be embedded into the template

stickyDataA dictionary of key, value pairs to be stored as hidden fields in the sign in form.

redirectA URL to redirect to after sign in. XXX Currently not working?

redirectA URL to redirect to after sign in. XXX Currently not working?

actionThe action of the form. i.e. the URL of script to send the sign in data to.

setupA function definition taking aAuthManager object as its only parameter which can be used to setup
auth data if the auth environment is created.

Driver Objects

driver (driver, environment, **params)
Used to return aDriver object.

driverThe type of driver being used. Currently only’database’ is allowed

environmentThe name of the environment being used. In the case of the database driver this is the string
prepended to all the tables used in the environment so that multiple environments can share the same
database.

**paramsAny parameters to be specified in the formatname=valuewhich are needed by the driver specified
by driver

classDriver
Driver objects have a number of methods which driver implementers must implement. These are docu-
mented in the source code. The following public methods are used to setup the environment.

completeAuthEnvironment ()
ReturnsTrue if the environment is correctly setup,False otherwise. In the case of the database
driver this method simply checks that all the necessary tables exist.

createAuthEnvironment ()
Creates the necessary environment. In the case of the database driver this method creates all the
required tables. If any of the tables already exist an error string is returned.

removeAuthEnvironment ([ignoreErrors=False])
Removes the environment. In the case of the database driver this method drops all the tables. If any of
the tables are not present a list of errors is returned unlessignoreErrorsis True

AuthSession Objects

The web.auth.session() function has the following parameters and is used to create aAuthSession
onject:

sesssion (store,[expire=0], [idle=0]) store
A valid web.session Store object.

expireAn integer specifying the number of seconds before the user is signed out. A value of 0 disables the
expire functionality and the user will be signed in until they sign out.Note: If the underlying session
expires, the cookie is removed or the sign in idles before the expire time specified inexpirethe user
will be signed out.

idleAn integer specifying the maximum number of seconds between requests before the user is automati-
cally signed out. A value of 0 disables the idle functionality allowing an unlimited amount of time
between user requests.Note: If the underlying session expires, the cookie is removed or the sign in
expires before the idle time specified inidle the user will be signed out.

10 Chapter 1. Web Modules

TheAuthSession object returned by thesession() function has the following methods and attributes:

classAuthSession
For managing the auth information stored in the session store. Has the following methods:

username ()
Returns the username as a string if a user is signed in, otherwise returns an empty string’’ .

signIn (username)
Sign in the user with usernameusername.

signOut ()
Sign out the signed in user.

userInfo ()
If a user is signed in, returns a dictionary with the following keys:’username’ , ’started’ ,
’accessed’ , ’expire’ , ’idle’ . If no user is signed in returnsNone.

AuthManager Objects

The web.auth.manager() function has the following parameters and is used to create aAuthManager
onject:

manager (driver, app) driver
TheDriver object.

appThe name of the current application

TheAuthManager object returned by themanager() function and has the following methods and attributes:

classAuthManager
Auth Manager for creating modifying and removing users and applications.

applicationExists (app)
ReturnTrue if there is an application namedapp, False otherwise.

addApplication (app)
Adds an application namedapp.

removeApplication (app)
Removes the application namedapp.

apps ()
Return a list of application names.

userExists (username)
ReturnTrue if there is a user with the usernameusername, False otherwise.

addUser (username, password[,firstname=”][,surname=”][email=”])
Adds a user with the usernameusernameand passwordpasswordto the system. You can optionally
also specify the firstname, surname and email address of the user.

removeUser (username)
Removes the user with the usernameusername.

getFirstname (username)
Returns the firstname of the userusername.

setFirstname (username, value)
Sets the firstname of the userusernameto value.

getSurname (username)
Returns the surname of the userusername.

setSurname (username, value)
Sets the surname of the userusernameto value.

getPassword (username)
Returns the password of the userusername.

setPassword (username, value)
Sets the password of the userusernameto value.

1.2. web.auth — Easy to use authorisation and user management system 11

getEmail (username)
Returns the email address of the userusername.

setEmail (username, value)
Sets the email address of the userusernameto value.

users ()
Return a list of usernames.

getAccessLevel (username, app)
Returns the access level of the userusernamefor the application namedapp.

setAccessLevel (username, app, level)
Sets the access level of the userusernamefor the application namedappto level.

getAccessLevels (username)
Returns a dictionary of application name, access level pairs for the user with the usernameusername.

1.3 datetime — Compatibility code providing date and time classes
for Python 2.2 users

The following classes provide a subset of the functionality of the Python 2.3date , time anddatetime Ob-
jects. If you want to do sophisticated date and time classes is it is reccommended that you use Python 2.3. These
classes are designed only so that Python 2.2 users can still use date and time functionality in theweb.database
module.

Note: It should be noted that although thetime anddatetime classes have the ability to support microseconds,
theweb.database module only deals in whole seconds since some of the underlying databases do not support
microseconds.

classdate (year, month, day)
A date object represents a date (year, month and day) in an idealized calendar, the current Gregorian
calendar indefinitely extended in both directions. January 1 of year 1 is called day number 1, January 2
of year 1 is called day number 2, and so on. This matches the definition of the ”proleptic Gregorian”
calendar in Dershowitz and Reingold’s bookCalendrical Calculations, where it’s the base calendar for all
computations. See the book for algorithms for converting between proleptic Gregorian ordinals and many
other calendar systems.

All arguments are required. Arguments may be ints or longs, in the following ranges:

•MINYEAR <= year <= MAXYEAR

•1 <= month <= 12

•1 <= day <= number of days in the given month and year

If an argument outside those ranges is given,ValueError is raised.

Instance Attributes:

year
BetweenMINYEARandMAXYEARinclusive.

month
Between 1 and 12 inclusive.

day
Between 1 and the number of days in the given month of the given year.

classtime ([hour=0][,minute=0][,second=0][,microsecond=0])
A time object represents a (local) time of day, independent of any particular day.

All arguments are required. Arguments may be ints or longs, in the following ranges:

•0 <= hour < 24

•0 <= minute < 60

12 Chapter 1. Web Modules

•0 <= second < 60

•0 <= microsecond< 1000000

If an argument outside those ranges is given,ValueError is raised.

Instance Attributes:

hour
In range(24) .

minute
In range(60) .

second
In range(60) .

microsecond
In range(1000000) .

classdatetime (year, month, day[,hour=0][,minute=0][,second=0][,microsecond=0])
A datetime object is a single object containing all the information from adate object and atime object.
Like a date object,datetime assumes the current Gregorian calendar extended in both directions; like
a time object,datetime assumes there are exactly 3600*24 seconds in every day.

All arguments are required. Arguments may be ints or longs, in the following ranges:

•MINYEAR <= year <= MAXYEAR

•1 <= month <= 12

•1 <= day <= number of days in the given month and year

•0 <= hour < 24

•0 <= minute < 60

•0 <= second < 60

•0 <= microsecond< 1000000

If an argument outside those ranges is given,ValueError is raised.

Instance Attributes:

year
BetweenMINYEARandMAXYEARinclusive.

month
Between 1 and 12 inclusive.

day
Between 1 and the number of days in the given month of the given year.

hour
In range(24) .

minute
In range(60) .

second
In range(60) .

microsecond
In range(1000000) .

All classes have the following class methods:

now()
Returns adatetime.datetime object representing the current date and time

1.3. datetime — Compatibility code providing date and time classes for Python 2.2 users 13

strftime (format)
Format the date using standard time module string format strings:

%a Locale’s abbreviated weekday name.
%A Locale’s full weekday name.
%b Locale’s abbreviated month name.
%B Locale’s full month name.
%c Locale’s appropriate date and time representation.
%d Day of the month as a decimal number [01,31].
%H Hour (24-hour clock) as a decimal number [00,23].
%I Hour (12-hour clock) as a decimal number [01,12].
%j Day of the year as a decimal number [001,366].
%m Month as a decimal number [01,12].
%M Minute as a decimal number [00,59].
%p Locale’s equivalent of either AM or PM.
%S Second as a decimal number [00,61]. (1)
%U Week number of the year (Sunday as the first day of the week)

as a decimal number [00,53]. All days in a new year preceding
the first Sunday are considered to be in week 0.

%w Weekday as a decimal number [0(Sunday),6].
%W Week number of the year (Monday as the first day of the week)

as a decimal number [00,53]. All days in a new year preceding
the first Monday are considered to be in week 0.

%x Locale’s appropriate date representation.
%X Locale’s appropriate time representation.
%y Year without century as a decimal number [00,99].
%Y Year with century as a decimal number.
%Z Time zone name (no characters if no time zone exists).
%% A literal "%" character.

For example:

>>> datetime.datetime(2004,5,3,10,30,50).strftime(’%x-%X’)
’05/03/04-10:30:50’

timetuple ()
Returns a basic time tuple for the date.Warning: The last 6 entries in the tuple returned from this function
are obtained fromtime.localtime() and do not represent anything.

isoformat ()
Return the date as a standard SQL string of the format.Warning: microseconds are ignored.

>>> import web, datetime
>>> datetime.date(2004,5,3).isoformat()
’2004-05-03’
>>> datetime.time(10,30,50,9).isoformat() # Microseconds are ignored
’10:30:50’
>>> datetime.datetime(2004,5,3,10,30,50).isoformat()
’2004-05-03 10:30:50’

1.3.1 Module-Level Functionality

Thedatetime module exports the following constants:

MINYEAR The smallest year number allowed in a date or datetime object. MINYEAR is 1.

MAXYEARThe largest year number allowed in a date or datetime object. MAXYEAR is 9999.

For Example:

14 Chapter 1. Web Modules

>>> import web # Necessary to set up the paths so datetime can be imported
>>> import datetime
>>> datetime.MINYEAR
1
>>> datetime.MAXYEAR
9999

1.3.2 Compatibility with Python 2.3 and above

Thedatetime module is as combitible as possible with Python 2.3. It does not implement all the features of the
Python 2.3datetime module but it implements all the ones the modules themselves need. Most of the time this
is all that is required. One important omission is that you cannot add or subtract date objects in this combatibility
module. Instead convert them to times and then convert them back again.

In order to write code compatible with both Python 2.2 and 2.3 there is one particular point to note;datetime
is not a type in Python 2.2, it is a class. This means thatdatetime.datetime.now() will not work because
you can’t call thenow() of an uninitialised class. Instead usedatetime.datetime(2004,1,1).now() .
This will produce the same (correct) result in both versions regardless of the values chosen for the date.

1.4 web.database — SQL database layer

The web.database module is a simple SQL abstraction layer which sits on top of a DB-API 2.0 cursor to
implement data type conversions, provide database independance and offer a more Python-like interface to the
data returned from queries. This is achieved by implementing common field types, a portable SQL dialect and a
standard API for all supported databases.

Here are the main features of the module:

• 100% compatible with the underlying DB-API 2.0 cursor. Aweb.database cursor provides access to
the underlying DB-API 2.0 cursor.

• Provides methods includingselect() , insert() , update() , delete() , create() , alter()
anddrop() which build and customise the SQL depending on the database being used providing database
independance.

• Provides strong typing for the data being used. No need to deal with SQL strings, the module automatically
encodes and decodes data for the approriate column.

See Also:

Python DB-SIG Pages
(http://www.python.org/topics/database/)

To find out more about the DB-API 2.0 or how to program using DB-API 2.0 methods, please visit
http://www.python.org/topics/database/. The rest of this documentation will assume you are not interested
in using the cursor as a DB-API 2.0 cursor and that you want to know the additional features available.

1.4.1 Background

Most database engines currently have many common features but their differences are such that Python code
written for one database engine using the DB-API 2.0 is unlikely to work with another database engine without
some degree of modification. To complicate matters further many DB-API 2.0 drivers are not actually fully DB-
API 2.0 compliant.

Variation between database engines occurs in SQL syntax, choice of field types and choice of which Python object
to use to represent field values.

1.4. web.database — SQL database layer 15

The DB-API 2.0 specification was designed with these differences in mind so that module implementers could
make full use of the features of their particular database engine. This module provides a simple, standardised and
portable API and SQL dialect which also exposes the interface components of the underlying DB-API 2.0 cursor.
In this way users can access a database in a simplified and portable fashion for simple operations whilst exposing
the DB-API 2.0 interface for more complex operations.

The drawback of this approach is that some of the fields available in a particular database will not be available
through this module. Also there is no support for complex SQL commands including indexes or views since not
all databases support them. The approach is only to support what is available to all databases being used.

If a database-specific feature is needed for a specific call you can always use the underlying cursor object directly.
By using theweb.database module as much as possible you will still make your code more portable across
databases should you ever need to change servers and by using theweb.database module exclusively you can
gain true database portability.

One of the major advantages of usingweb.database is that it comes with a pure Python SQL engine named
SnakeSQL which fully implements the specification (albeit slowly) so if you useweb.database in your own
code you can guarantee your users will be able to run your application even if they do not have access to a better
known database engine.

Comments and questions about this specification may be directed to James Gardner at docs at pythonweb.org.

1.4.2 Introduction

Understanding Field Types

The information you send to the database and the information retrieved from the database will be automatically
converted to the correct formats so that you can treat the values as normal Python objects.

Traditional SQL databases usually have support for a number of different fields. Date fields behave differently to
integer fields for example. All of the fields are set using an SQL representation of the data in the form of a string
and all of the queries from the database return strings.

The web.database module provides ten field types and rather than passing information to and from the
database as specially SQL encoded strings, you can also pass it as a python data structure. For example to
set anInteger field you could give the cursor an integer. To set aDate field you would give the cursor a
datetime.date object. Theweb.database cursor would do all the conversion for you.

Furthermore when you retrieve information from the database thecursor will convert the strings recieved back
into Python objects so that you never need to worry about the encodings.

This doesn’t sound like too much of a big deal but because different databases handle different datatypes in
slightly different ways your SQL could have different results on different databases. Programming with a
web.database cursor removes these inconsistencies.

Here are the supported datatypes:

Type Description
Bool True or False
Integer Any Python integer (not Python Long or Decimal)
Long Any Python long integer between -9223372036854775808 and 9223372036854775807
Float Any Python floating point number
String A string of 255 characters or less (Not unicode?) [a]
Text A 24-bit string [b]
Binary A 24-bit binary string [b]]
Date Any valid Pythondatetime.date object. Takes values in the form of pythondatetime objects. Only stores days, months and years, any other information is truncated. Dates from0001-01-01 to 9999-12-31 . [c]
Time Any valid Pythondatetime.time object. Takes values in the form of pythondatetime objects. Only stores hours, minutes and seconds, any other information is truncated. [c]
Datetime Any valid Pythondatetime.datetime object. Takes values in the form of pythondatetime objects. Only stores days, months, years, hours, minutes and seconds, any other information is truncated. [c]

[a] Some databases make a distinction between short strings (often named VARCHAR) and long strings (often
TEXT). Short string fields are normally faster and so a distinction is also made in this specification.

16 Chapter 1. Web Modules

[b] Although Python supports strings of greater than 24 bit, a lot of databases do not and so in order to be
compatible with those databases Binary and String objects should be no longer than 24 bit.

[c] Although Python ¡ 2.3 does not support datetime objects, pure Python compatible libraries exist for Python ¡
2.3 and these can be used instead so it makes sense to use the standard Python types where possible.

The values you pass to thecursor.execute() method should be of the correct type for the field they are
representing. The values returned by thecursor.fetchall() method will automatically be returned as the
appropriate Python type.

For example,Bool fields should have the Python valuesTrue or False , Long fields should be a valid Python
long etc.

There are some exceptions:

String fields should contain Python strings of 255 characters of less.Text fields should contain 24 bit strings
less. For strings longer than this length you should consider saving the string in a file and saving the filename in
the database instead.

Date , Datetime and Time fields take Python datetime.date , datetime.datetime and
datetime.time objects respectively.

Unfortunately Python 2.2 and below do not support thedatetime module. Howeverweb.database uses a
compatibility module that behaves closely enough for most purposes. Simply importweb.database and then
you can import the datetime module automatically. This is what it looks like at the Python prompt:

Python 2.2.3 (#42, May 30 2003, 18:12:08) [MSC 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import \module{web.database}
>>> import datetime
>>> print datetime.date(2004,11,24)
2004-11-24
>>>

1.4.3 Connecting to a Database

Connecting to a database is really very easy. The code below will connect to a MySQL database named ’test’.

import web, web.database
connection = web.database.connect(adapter="mysql", database="test")

Below is a description of the full range of parameters theconnect() function can take (Obviously not all of the
database support all of the parameters):

connect (driver,[database,][user,][password,][host,][port,][socket,][**params])
Constructor for creating a connection to a database. Returns aConnection object. Not all databases will
use all the parameters, but databases should use the parameters specified and not abbreviated versions. Any
more complex parameters are passed directly to the underlying driver’sconnect() method.

driverThe type of database to connect to. Can currently be’MySQL’ , ’PySQLite’ or ’web.database
’ but it is hoped that most database drivers will eventually be supported.

databaseThe database name to connect to.

userThe username to connect with.

passwordThe password to use.

hostThe host to connect to if the database is running on a remote server.

portThe port to connect to if the database is running on a remote server.

socketThe socket to connect to if the database is running locally and requires a socket.

1.4. web.database — SQL database layer 17

**paramsAny other parameters to be passed to the driver

Here are some examples:

Connect to the unpassworded MySQL databaseMyDatabase on a local server connected through a socket
‘ /tmp/mysqld.sock’. Another common socket file used is ‘/tmp/mysql.sock’.

connection = web.database.connect(
adapter="mysql",
database="MyDatabase",
socket="/tmp/mysqld.sock",

)

Connect to a the databaseMyDatabase asusername with passwordpassword . The MySQL server is runing
remotely atmysql.example.com on port3336 :

connection = web.database.connect(
adapter="mysql",
database="MyDatabase",
host="mysql.example.com",
port="3336",
user="username",
password="password",

)

Connect to theweb.database database in the directory ‘C:/TestDirectory’

connection = web.database.connect(
adapter="\module{web.database} ",
database="C:/TestDirectory",

)

Note: Windows users may find it easier to use forward slahes in paths to avoid having to quote backslashes. Both
work equally well.

1.4.4 Cursor Options

Once you have connected to the database you will need aCursor object with which to manipulate the database.
Cursor stands for a ”CURrent Set Of Results”.

Once we have the connection to the database,connection , we can easily create a cursor by calling the
connection ’s cursor() method.

import web, web.database
connection = web.database.connect(adapter="mysql", database="test")
cursor = connection.cursor()

The next sections show you the different ways to use thecursor .

1.4.5 Executing SQL

Theexecute() method is used to retrieve information from a database and looks like this:

18 Chapter 1. Web Modules

cursor.execute("SELECT * FROM Test")

or

cursor.execute("INSERT INTO Test (dateColumn, numberColumn) VALUES (’2004-11-8’, 4)")

web.database uses? style parameter substitution. This means theexecute() method can take a list of
values to substitute for any unquoted? symbols in the SQL string.

values = [datetime.date(2004,11,8), 4]
cursor.execute("INSERT INTO Test (dateColumn, numberColumn) VALUES (?, ?)", values)

or

cursor.execute(
sql="UPDATE Test SET dateColumn=?, numberColumn=? WHERE stringColumn=?",
parameters=[datetime.date(2004,11,8), 4, "where string"]

)

At first sight the parameter substitution doesn’t seem to offer much of an advantage but in fact it is extremely
useful becauseweb.database will automatically convert the values to SQL for you so that you don’t need to
convert them yourself.

Note: Parameter substitution can be done for any value which needs conversion. This includes default values in
CREATEstatements and values inINSERT andUPDATEstatements orWHEREclauses. Parameter substitutions
arenot available for strings which do not need conversions such as table names, column names etc.

The module also supportsexecutemany() . This method does the same asexecute() except it executes
once for each sequence in the values parameter. For example:

cursor.executemany(
sql="UPDATE Test SET dateColumn=?, numberColumn=? WHERE stringColumn=?",
parameters=[

[datetime.date(2004,11,8), 4, "string1"],
[datetime.date(2004,11,8), 5, "string2"],
[datetime.date(2004,11,8), 6, "string3"],

]
)

In web.database this is no more efficient than executing a number of normalcursor.execute() methods.

web.database also provides cursor abstraction methods which provide a functional interface to execute SQL.
For example here we insert some values into a table.

cursor.insert(
table = ’testTable’,
columns = [’col1’,’col2’],
values = [’val1’, 2],

)

Cursor abstraction methods exist for all the SQL commands supported byweb.database . These are described
later.

Thecursor() method takes the following options and will return the appropriate cursor object:

1.4. web.database — SQL database layer 19

cursor ([execute=True], [format=’tuple’], [convert=True], [mode=’portable’])
The default values which the cursor abstraction methods will take for the values ofexecute, format and
convertcan be set using this method.

formatThis can be’tuple’ to return the results as a tuples,’text’ to return as text wrapped to 80
characters for display in a terminal,’dict’ to return the results as dictionaries or’object’ to
return the results as result objects to be treated as dictionaries, tuples or via attribute access.

convertConvert the results to standard formats (should beTrue for most users)

executeUsed in the cursor SQL methods. IfTrue then rather than returning an SQL string, the methods
execute the results

modeThe default mode for theexecute() method. Can be’portable’ to use the SQL abstraction
methods or’direct’ to send the SQL directly to the underlying cursor.

1.4.6 Retrieving Results

Once you have executed a SELECT statement you will want to retrieve the results. This is done using the
cursor.fetchall() method:

cursor.execute("SELECT * FROM Test")
results = cursor.fetchall()

Theresults variable will always contain a tuple of tuples of fields. If the query matched no rows, result will be
((),) . If it matched one row it will be in the form((col1, col2, col3, etc),) . If it matched more
than one it will be in the form((col1, col2, col3, etc), (col1, col2, col3, etc), etc
)

You can print the results like this:

for row in cursor.fetchall():
print "New Row"
for field in row:

print field

The cursor.fetchall() method will return the same results until another SQL query is executed using
cursor.execute() .

1.4.7 Transactions, Rollbacks and Committing Changes

Most databases supported byweb.database support basic transactions. This means that you can make a
number of changes to the database but if your program crashes your changes will not be saved so that the database
is not left in an unstable state where you have updated some tables but not others.

Changes are only saved (or committed) to the database when you call theconnection object’scommit()
method:

connection.commit()

If you have made a mistake and want to lose all the changes you have made, you can rollback the database to its
previous state using theconnection object’srollback() method:

connection.rollback()

20 Chapter 1. Web Modules

Finally, if you have finished using a connection you can close it using theconnection object’s close()
method. This will also rollback the database to the time you last committed your changes so if you want to save
your changes you should callcommit() first.

connection.commit()
connection.close()

Note: Please note that making these changes to theconnection object will automatically affect allcursor
objects of that connection as well since they all share the same connection object.

Warning: The MySQL adapter doesnot support transactions. Results are automatically committed. If anyone
can suggest an effective way around this please let me know!

1.4.8 Special Characters

This section describes how to deal with special characters in Python andweb.database .

In Python

Within a Python string, certain sequences have special meaning. Each of these sequences begins with a backslash
\ , known as the escape character. The values (and different escape methods) allowed in string literals are described
in the Python documentation athttp://www.python.org/doc/current/ref/strings.html. This is a brief summary.

Python recognizes the following escape sequences:

\\ Backslash (\)
\’ Single quote (’)
\" Double quote (")
\a ASCII Bell (BEL)
\b ASCII Backspace (BS)
\f ASCII Formfeed (FF)
\n ASCII Linefeed (LF)
\N{name} Character named name in the Unicode database (Unicode only)
\r ASCII Carriage Return (CR)
\t ASCII Horizontal Tab (TAB)
\uxxxx Character with 16-bit hex value xxxx (Unicode only)
\Uxxxxxxxx Character with 32-bit hex value xxxxxxxx (Unicode only)
\v ASCII Vertical Tab (VT)
\ooo Character with octal value ooo
\xhh Character with hex value hh

These sequences are case sensitive. For example,\b is interpreted as a backspace, but\B is not.

You can use these characters in SQL exactly the same way as you would in Python. For example’end of one
line\nstart of new line’ is a valid SQL string containing a line break in the middle and could be used
like this:

cursor.execute("INSERT INTO table (columnOne) VALUES (’end of one line\nstart of new line’)")

There is one important point to note about how Python (and henceweb.database) deals with these escape
characters. If a string contains a backslash\ but the character after the backslash is not a character which can
be escaped then the single backslash is treated as a single backslash. If the character can be used in an escape
sequence then the backslash is treated as an escape character and the character is escaped.

Note: All examples in this section are from the Python prompt not theweb.database one.

For example:

1.4. web.database — SQL database layer 21

Python 2.4 (#60, Nov 30 2004, 11:49:19) [MSC v.1310 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> print ’hello\%world’
hello\%world
>>> print ’hello\nworld’
hello
world
>>>

If a string contains both escaped and non-escaped characters Python guesses which are backslashes and which are
escape characters:

>>> print ’hello\nworld\%again’
hello
world\%again
>>>

If a string contains a double backslash\\ it is always treated as an escaped backslash character and printed as\ .

>>> print ’\\%’
\%
>>> print ’\%’
\%

This means that the following expression is True:

>>> print ’\\%’ == ’\%’
True
>>>

But the following is not:

>>> print ’\\\\%’ == ’\\%’
False
>>>

When writing Python strings you have to be very careful how the backslash character is being used and then you
will have no problems.

In SQL

In SQL all strings must be properly quoted using single quotes. To insert a string likeJames into the database,
we use the SQL’James’ but what if we want to insert the stringtail’s ? Because it has a’ character in it we
can’t simply do’tail’s’ as the SQL parser won’t know which’ ends the string. Instead we use’tail’’s’ .
Double single quotes (’’) in SQL mean a’ character.

The single quote character’ is the only character which needs special treatment in SQL all the others like\n
behave exactly as they do in Python as described above.

For example:

cursor.execute("INSERT INTO table (columnOne) VALUES (’James’’s’)")

22 Chapter 1. Web Modules

The Easy Way

If you are using the advanced cursor methods likecursor.insert() or cursor.update() (described
later) or parameter substitution (described earlier), the easiest way to deal with special characters is to do nothing
with them at all. The methods will automatically handle the conversions for you.

For example:

cursor.insert(
table=’table’,
columns=[’columnOne’],
values=["James’s"],

)

or

cursor.execute("INSERT INTO table (columnOne) VALUES (?)", "James’s")

If you want explicitly want to use the cursor methods likecursor.insert() or cursor.update() but
with quoted SQL strings rather than having the conversions done automatically you can do so like this:

cursor.insert(
table=’table’,
columns=[’columnOne’],
sqlValues=["’James’’s’"],

)

1.4.9 SQL Reference

The SQL parser to parsecursor.execute(sql, mode=’portable’) statements has already been writ-
ten and is available as a standalone module namedSQLParserTools . The approach of parsing an SQL state-
ment just to rebuild it again in an abstraction layer function might sound unnecessary but the advantage is that the
SQL written in this manner is guaranteed to function in the same way across allweb.database databases.

This specification implements what is considered the lowest possible useful SQL feature set which is commonly
used and which all databases will support. A balance has had to be made between including useful features and
excluding features which only some database engines support. Also no duplication of features has been included.
For exampleBETWEENcan be implemented using> and< operators in theWHEREclause so has not been included
but theLIKE operator has.

The specification includes:

SQL SELECT

SQL WHERE

SQL INSERT

SQL UPDATE

SQL DELETE

SQL ORDER BY

SQL AND & OR

Simple Joins

1.4. web.database — SQL database layer 23

SQL CREATE

SQL DROP

NULL values

Database Tables A database most often contains one or more tables. Each table is identified by a name (e.g.
Customers or Orders). Tables contain records (rows) with data.

Below is an example of a table calledPerson :

+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
| Smith | John | 10 | 1980-01-01 |
+----------+-----------+--------+-------------+
| Doe | John | 3 | 1981-12-25 |
+----------+-----------+--------+-------------+

The table above contains two records (one for each person) and four columns (LastName, FirstName, Address,
and DateOfBirth).

Queries With SQL, we can query a database and have a result set returned.

A query looks like this:

SELECT LastName FROM Person

Gives a result set like this:

+----------+
| LastName |
+----------+
| Smith |
+----------+
| Doe |
+----------+

Note: Some database systems require a semicolon at the end of the SQL statement.web.database does not.

The SELECT Statement

The SELECT statement is used to select data from a table. The tabular result is stored in a result table (called the
result-set).

SELECT column_name(s) FROM table_name

Select Some Columns To select the columns namedLastName andFirstName , use a SELECT statement
like this:

SELECT LastName, FirstName FROM Person

Table Person:

24 Chapter 1. Web Modules

+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
| Smith | John | 10 | 1980-01-01 |
+----------+-----------+--------+-------------+
| Doe | John | 3 | 1981-12-25 |
+----------+-----------+--------+-------------+

Result Set:

+----------+-----------+
| LastName | FirstName |
+----------+-----------+
| Smith | John |
+----------+-----------+
| Doe | John |
+----------+-----------+

The order of the columns in the result is the same as the order of the columns in the query.

Select All Columns To select all columns from thePerson table, use a* symbol instead of column names,
like this:

SELECT * FROM Person

Result Set:

+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
| Smith | John | 10 | 1980-01-01 |
+----------+-----------+--------+-------------+
| Doe | John | 3 | 1981-12-25 |
+----------+-----------+--------+-------------+

The WHERE Clause

The WHERE clause is used to specify a selection criterion.

The syntax of the where clause is:

SELECT column FROM table WHERE column operator value

With the WHERE clause, the following operators can be used:

1.4. web.database — SQL database layer 25

Operator Description
-------- -----------
= Equal
<> Not equal
> Greater than
< Less than
>= Greater than or equal
<= Less than or equal
LIKE Pattern match (described later)
IS Used for comparison to NULL
IS NOT Used for comparison to NULL

In some versions of SQL the<> operator may be written as!= but not inweb.database . Note that the equals
operator in SQL is= not== as it is in Python.

The = and <> operators cannot be used to compareNULL values because a field cannot be equal to nothing.
Instead theIS andIS NOT operators should be used.

Using the WHERE Clause To select only the people whose last name areSmith , we add a WHERE clause
to the SELECT statement:

SELECT * FROM Person WHERE LastName=’Smith’

Person table:

+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
| ’Smith’ | ’John’ | 10 | 1980-01-01 |
| ’Doe’ | ’John’ | 3 | 1981-12-25 |
+----------+-----------+--------+-------------+

Result set:

+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
| ’Smith’ | ’John’ | 10 | 1980-01-01 |
+----------+-----------+--------+-------------+

Using Quotes Note that we have used single quotes around the conditional values in the examples.

SQL uses single quotes around text values (some database systems will also accept double quotes, not
web.database). Numeric values should not be enclosed in quotes.

For text values:

This is correct:

SELECT * FROM Person WHERE LastName=’Smith’

This is wrong:

SELECT * FROM Person WHERE LastName=Smith

26 Chapter 1. Web Modules

For numeric values:

This is correct:

SELECT * FROM Person WHERE Number>10

This is wrong:

SELECT * FROM Person WHERE Number>’10’

The LIKE Condition TheLIKE condition is used to specify a search for a pattern in a column.

SELECT column FROM table WHERE column LIKE pattern

A %sign can be used to define wildcards (missing letters in the pattern).

The following SQL statement will return people with first names that start with an ’O’:

SELECT * FROM Person WHERE FirstName LIKE ’O%’

The following SQL statement will return people with first names that end with an ’a’:

SELECT column FROM table WHERE FirstName LIKE ’%a’

The following SQL statement will return people with first names that contain the pattern ’la’:

SELECT column FROM table WHERE FirstName LIKE ’%la%’

You can use as many%characters as you need in the pattern to match zero or more characters. If you need to have
an actual%characters in the pattern you will need to escape it like this
%.

The following SQL statement will return values that end with a%character.

SELECT column FROM table WHERE Percentage LIKE ’%\%’

web.database does not support theBETWEENcondition since the same thing can be achieved using compari-
son operators.

The INSERT INTO Statement

The INSERT INTO statement is used to insert new rows into a table.

Syntax

INSERT INTO table_name (column1, column2,...) VALUES (value1, value2,....)

1.4. web.database — SQL database layer 27

Insert a New Row This Person table:

+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
| ’Smith’ | ’John’ | 10 | 1980-01-01 |
| ’Doe’ | ’John’ | 3 | 1981-12-25 |
+----------+-----------+--------+-------------+

And this SQL statement:

INSERT INTO Person (LastName, FirstName, Number, DateOfBirth)
VALUES (’Blair’, ’Tony’, 8, ’1953-05-06’)

Note: web.database expects the SQL to all be on one line. The line break here is for formatting

Will give this result:

+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
’Smith’	’John’	10	1980-01-01
’Doe’	’John’	3	1981-12-25
’Blair’	’Tony’	8	1953-05-06
+----------+-----------+--------+-------------+

If you are extremely careful, the column names can be omitted as long as the values are specified in the same order
as the columns when the table was created.

The SQL below would achieve the same result as the previous SQL statement:

INSERT INTO Person VALUES (’Blair’, ’Tony’, 8, ’1953-05-06’)

Warning: It is very easy to make a mistake with the shortened syntax so it is recommended you use the full
version and specify the column names.

The UPDATE Statement

The UPDATE statement is used to modify the data in a table.

Syntax:

UPDATE table_name SET column_name = new_value WHERE column_name = some_value

Update one Column in a Row Person table

28 Chapter 1. Web Modules

+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
’Smith’	’John’	10	1980-01-01
’Doe’	’John’	3	1981-12-25
’Blair’	’Tony’	8	1953-05-06
+----------+-----------+--------+-------------+

We want to add a change Tony Blair’s first name toJames:

UPDATE Person SET FirstName = ’James’ WHERE LastName = ’Blair’

Person table

+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
’Smith’	’John’	10	1980-01-01
’Doe’	’John’	3	1981-12-25
’Blair’	’James’	8	1953-05-06
+----------+-----------+--------+-------------+

Update several Columns in a Row We want to change the number of everyone with a FirstNameJohn and
make their DateOfBirth all1980-01-01 :

UPDATE Person SET Number = 1, DateOfBirth = ’1980-01-01’ WHERE FirstName = ’John’

Result:

+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
’Smith’	’John’	1	1980-01-01
’Doe’	’John’	1	1980-01-01
’Blair’	’James’	8	1953-05-06
+----------+-----------+--------+-------------+

The DELETE Statement

The DELETE statement is used to delete rows in a table.

Syntax

DELETE FROM table_name
WHERE column_name = some_value

Delete a Row Person:

1.4. web.database — SQL database layer 29

+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
’Smith’	’John’	1	1980-01-01
’Doe’	’John’	1	1980-01-01
’Blair’	’James’	8	1953-05-06
+----------+-----------+--------+-------------+

John Doe is going to be deleted:

DELETE FROM Person WHERE LastName = ’Doe’

Result

+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
| ’Smith’ | ’John’ | 1 | 1980-01-01 |
| ’Blair’ | ’James’ | 8 | 1953-05-06 |
+----------+-----------+--------+-------------+

Delete All Rows It is possible to delete all rows in a table without deleting the table. This means that the table
structure and attributes will be intact:

DELETE FROM table_name

Result

+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
+----------+-----------+--------+-------------+

ORDER BY

The ORDER BY keyword is used to sort the result.

Sort the Rows The ORDER BY clause is used to sort the rows.

Orders:

+-------------+-------------+
| Company | OrderNumber |
+-------------+-------------+
’Asda’	5678
’Morrisons’	1234
’Tesco’	2345
’Morrisons’	7654
+-------------+-------------+

30 Chapter 1. Web Modules

To display the companies in alphabetical order:

SELECT Company, OrderNumber FROM Orders ORDER BY Company

Result:

+-------------+-------------+
| Company | OrderNumber |
+-------------+-------------+
’Asda’	5678
’Morrisons’	1234
’Morrisons’	7654
’Tesco’	2345
+-------------+-------------+

Example

To display the companies in alphabetical order AND the order numbers in numerical order:

SELECT Company, OrderNumber FROM Orders ORDER BY Company, OrderNumber

Result:

+-------------+-------------+
| Company | OrderNumber |
+-------------+-------------+
’Asda’	5678
’Morrisons’	1234
’Morrisons’	7654
’Tesco’	2345
+-------------+-------------+

Example

To display the companies in reverse alphabetical order:

SELECT Company, OrderNumber FROM Orders ORDER BY Company DESC

Result:

+-------------+-------------+
| Company | OrderNumber |
+-------------+-------------+
’Tesco’	2345
’Morrisons’	1234
’Morrisons’	7654
’Asda’	5678
+-------------+-------------+

Example

To display the companies in alphabetical order AND the order numbers in reverse numerical order:

1.4. web.database — SQL database layer 31

SELECT Company, OrderNumber FROM Orders ORDER BY Company ASC, OrderNumber DESC

Result:

+-------------+-------------+
| Company | OrderNumber |
+-------------+-------------+
’Asda’	5678
’Morrisons’	7654
’Morrisons’	1234
’Tesco’	2345
+-------------+-------------+

AND & OR

AND and OR join two or more conditions in a WHERE clause.

The AND operator displays a row if ALL conditions listed are true. The OR operator displays a row if ANY of
the conditions listed are true.

Original Table (used in the examples)

+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
’Smith’	’John’	1	1980-01-01
’Doe’	’John’	1	1980-01-01
’Blair’	’James’	8	1953-05-06
+----------+-----------+--------+-------------+

Use AND to display each person with the first name equal toJohn , and the last name equal toSmith :

SELECT * FROM Person WHERE FirstName=’John’ AND LastName=’Smith’

Result Set

+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
| ’Smith’ | ’John’ | 1 | 1980-01-01 |
+----------+-----------+--------+-------------+

Use OR to display each person with the first name equal toJames, or the last name equal toSmith :

SELECT * FROM Person WHERE FirstName=’James’ OR LastName=’Smith’

Result Set

32 Chapter 1. Web Modules

+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
| ’Smith’ | ’John’ | 1 | 1980-01-01 |
| ’Blair’ | ’James’ | 8 | 1953-05-06 |
+----------+-----------+--------+-------------+

Example

You can also combine AND and OR use parentheses to form complex expressions:

SELECT * FROM Person WHERE (FirstName=’James’ AND LastName=’Smith’) OR LastName=’Blair’

Result Set

+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
| ’Blair’ | ’James’ | 8 | 1953-05-06 |
+----------+-----------+--------+-------------+

NULL Values

An important feature ofweb.database is its ability to supportNULLvalues. A field which contains aNULL
value is simply a field where no value has been set or the value as been set to contain no value. This is quite
different, for example, from aString field which has been set a value’’ , an empty string.

Original Table (used in the examples)

+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
’Smith’	’John’	1	1980-01-01
’Doe’	’John’	1	1980-01-01
’Blair’	’James’	8	1953-05-06
+----------+-----------+--------+-------------+

Our query

UPDATE Person SET FirstName=NULL WHERE LastName=’Doe’

Our table now looks like this:

+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
’Smith’	’John’	1	1980-01-01
’Doe’	NULL	1	1980-01-01
’Blair’	’James’	8	1953-05-06
+----------+-----------+--------+-------------+

This is quite different from this query which simply sets the FirstName to the string’NULL’ not the valueNULL:

1.4. web.database — SQL database layer 33

UPDATE Person SET FirstName=’NULL’ WHERE FirstName IS NULL

Our table now looks like this:

+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
’Smith’	’John’	1	1980-01-01
’Doe’	’NULL’	1	1980-01-01
’Blair’	’James’	8	1953-05-06
+----------+-----------+--------+-------------+

This is one of the reasons why it is important to use the correct quotations around values in you SQL.

Note: We use theIS operator rather than the= operator to compare fields toNULLvalues.

If you inserted a row into the table without specifying all the columns the columns you had not specified would
contain the valueNULLunless you had specified aDEFAULTvalue when you created the table.

CREATE

To create a table in a database:

Syntax

CREATE TABLE table_name
(
column_name1 data_type options,
column_name2 data_type options,
.......
)

Example

This example demonstrates how you can create a table namedPerson , with four columns. The column names
will be LastName , FirstName , Number, andDateOfBirth :

CREATE TABLE Person (LastName String, FirstName String, Number String, DateOfBirth Date)

The data type specifies what type of data the column can hold. The table below contains the data types supported
by web.database :

Type Description
Bool True or False
Integer Any Python integer (not Python Long or Decimal)
Long Any Python long integer between -9223372036854775808 and 9223372036854775807
Float Any Python floating point number
String A string of 255 characters or less (Not unicode?) [a]
Text A 24-bit string [b]
Binary A 24-bit binary string [b]]
Date Any valid Pythondatetime.date object. Takes values in the form of pythondatetime objects. Only stores days, months and years, any other information is truncated. Dates from0001-01-01 to 9999-12-31 . [c]
Time Any valid Pythondatetime.time object. Takes values in the form of pythondatetime objects. Only stores hours, minutes and seconds, any other information is truncated. [c]
Datetime Any valid Pythondatetime.datetime object. Takes values in the form of pythondatetime objects. Only stores days, months, years, hours, minutes and seconds, any other information is truncated. [c]

34 Chapter 1. Web Modules

[a] Some databases make a distinction between short strings (often named VARCHAR) and long strings (often
TEXT). Short string fields are normally faster and so a distinction is also made in this specification.

[b] Although Python supports strings of greater than 24 bit, a lot of databases do not and so in order to be
compatible with those databases Binary and String objects should be no longer than 24 bit.

[c] Although Python ¡ 2.3 does not support datetime objects, pure Python compatible libraries exist for Python ¡
2.3 and these can be used instead so it makes sense to use the standard Python types where possible. The options
can be used to further specify what values the field can take. They are described in the next sections.

REQUIRED In web.database , REQUIREDsimply means that the field cannot contain aNULL value. If
you insert a row into a table with aREQUIREDfield, you must specify a value for the field unless you have also
specified the field to have aDEFAULTvalue which is notNULL in which case the default value will be used. If
you try to set the field toNULLan error will be raised.

To create a table withLastName andFirstName columns whereLastName could not take aNULLvalue you
would use:

CREATE TABLE Person (LastName String REQUIRED, FirstName String)

UNIQUE In web.database , a UNIQUEfield is one in which all values in the table must be different. An
error occurs if you try to add a new row with a value that matches an existing row. The exception to this is that if
a column is not specified asREQUIRED, i.e. it is allowed to containNULLvalues, it can contain multipleNULL
values.

To create a table withLastName and FirstName columns where all the values ofLastName had to be
different orNULLyou would use:

CREATE TABLE Person (LastName String UNIQUE, FirstName String)

If a field is specified asUNIQUE, web.database will not also let you specify aDEFAULTvalue.

Bool, Float, Text and Binary fields cannot be unique.

PRIMARY KEY PRIMARY KEYcolumns are unique and cannot takeNULLvalues. Each table can only have
one field specified asPRIMARY KEY.

Primary keys can sometimes be used byweb.database ’s drivers to speed up database queries. APRIMARY
KEYcolumn is a column where the value is used to uniquely identify the row.

To create a table withLastName andFirstName columns whereLastName is a primary key use:

CREATE TABLE Person (LastName String PRIMARY KEY, FirstName String)

Bool, Float, Text and Binary fields cannot be primary keys.

DEFAULT TheDEFAULToption is used to specify a default value for a field to be used if a value is not specified
when a new row is added to a table.

To create a table withLastName andFirstName columns where the default value forLastName is ’Smith’
we would use:

CREATE TABLE Person (LastName String DEFAULT=’Smith’, FirstName String)

1.4. web.database — SQL database layer 35

You cannot specify aDEFAULTif the column is aPRIMARY KEYor UNIQUE.

If no DEFAULTis specified theDEFAULTis NULL.

Binary and Text fields cannot have default values.

FOREIGN KEY The final option isFOREIGN KEY. If a column is specifiedFOREIGN KEYit cannot have
any other options. The table specified as providing the foreign key must have a primary key. It is the primary key
value which is used as a foreign key in the other table.

For example:

CREATE TABLE Houses (House Integer, Owner String FOREIGN KEY=People)

Bool, Float, Text and Binary fields cannot be foreign key fields.

Foreign keys are described in more detail in the section on joins.

DROP Table

Delete a Table To delete a table (the table structure and attributes will also be deleted):

DROP TABLE table_name

Note: If you are using foreign key constraints you cannot drop a parent table if the child table still exists you
should drop the child table first.

If you want to drop more than one table you can use this alternative syntax:

DROP TABLE table1, table2, table3

FOREIGN KEY and Joins

Sometimes we have to select data from two or more tables to make our result complete. We have to perform a
join. Joins and the use of primary and foreign keys are inter-related.

FOREIGN KEY Tables in a database can be related to each other with keys. A primary key is a column with a
unique value for each row. The purpose is to bind data together, across tables, without repeating all of the data in
every table.

In thePeople table below, theLastName column is the primary key, meaning that no two rows can have the
sameLastName . TheLastName distinguishes two persons even if they have the same name.

When you look at the example tables below, notice that:

• TheLastName column is the primary key of thePeople table

• TheHouse column is the primary key of theHouses table

• The Owner column in theHouse table is used to refer to the people in thePeople table. Owner is a
foreign key field.

36 Chapter 1. Web Modules

People
+----------+-----------+--------+-------------+
| LastName | FirstName | Number | DateOfBirth |
+----------+-----------+--------+-------------+
| Smith | John | 10 | 1980-01-01 |
+----------+-----------+--------+-------------+
| Doe | James | 3 | 1981-12-25 |
+----------+-----------+--------+-------------+

Houses
+-------+-------+
| House | Owner |
+-------+-------+
| 1 | Smith |
+-------+-------+
| 2 | Smith |
+-------+-------+
| 3 | Doe |
+-------+-------+

People may own more than one house. In our example John Smith owns both House1 and2. In order to keep
the database consistent you would not want to removeSmith from thePeople table or drop thePeople table
because theHouses table would still contain a reference toSmith . Similarly you wouldn’t want to insert or
update a value in theOwner column of theHouses table which didn’t exist as a primary key for thePeople
table.

By specifying theOwner column of theHouses table as a foregin key these constraints are enforced by
web.database .

The SQL for the tables is below.Note: The line breaks in the firstCREATEstatement are for formatting;
web.database doesn’t support line breaks in SQL.

CREATE TABLE People (
LastName String PRIMARY KEY, FirstName String,
Number Integer, DateOfBirth Date

)
CREATE TABLE Houses (House Integer, Owner String FOREIGN KEY=People)

If a column is specifiedFOREIGN KEYit cannot have any other options. The table specified as providing the
foreign key must have a primary key. It is the primary key value which is used as a foreign key in the other table.

Bool, Float, Text and Binary fields cannot be foreign key fields.

We can select data from two tables by referring to two tables, using the SQL below.Note: The line breaks are just
for formatting;web.database doesn’t support line breaks in SQL.

SELECT Houses.House, People.FirstName, Houses.Owner
FROM People, Houses
WHERE People.LastName=Houses.Owner

Here is the result

1.4. web.database — SQL database layer 37

+--------------+------------------+--------------+
| Houses.House | People.FirstName | Houses.Owner |
+--------------+------------------+--------------+
1	’John’	’Smith’
2	’John’	’Smith’
3	’James’	’Doe’
+--------------+------------------+--------------+

and another example:

SELECT Houses.House, People.FirstName, Houses.Owner
FROM People, Houses
WHERE People.LastName=Houses.Owner and People.DateOfBirth<’1981-01-01’

Here is the result

+--------------+------------------+--------------+
| Houses.House | People.FirstName | Houses.Owner |
+--------------+------------------+--------------+
| 1 | ’John’ | ’Smith’ |
| 2 | ’John’ | ’Smith’ |
+--------------+------------------+--------------+

1.4.10 Cursor Abstraction Methods

This section describes how to use the following SQL methods of thecursor object:

select() , insert() , update() , delete() , create() , alter() , drop() , function()

These functions are designed to reflect the SQL syntax you would use if you were writing the SQL directly. For
example you might write:

SELECT fieldName FROM tableName
INSERT INTO tableName value1, value2

Accordingly theselect() andinsert() methods accept thefieldsandtableparameters in a different order.
It is reccomended however that you always specify parameters by name rather than relying on their order as future
versions may have different parameters in different places.

See Also:

w3schools SQL Tutorial
(http://www.w3schools.com/sql/default.asp)

A good introduction to SQL commands can be found on the w3schools website at
http://www.w3schools.com/sql/default.asp.

Selecting Data

select (tables, columns,[values=[],][where=None,][order=None,][execute=None,][fetch=None,
][**params])

Build an SQL string according to the options specified and optionally execute the SQL and return the results
in the format specified. No error checking on field names if the SQL string is only being built. Strict error
checking is only performed when executing the code.

38 Chapter 1. Web Modules

tablesA string containing the name of the table to select from or if selecting from multiple tables, a sequence
of table names.

columnsA sequence of column names to select. Can be a string if only one column is being selected. If se-
lecting from multiple tables, all column names should be in the form’tableName.columnName’

valuesA list of values to substitute for? in theWHEREclause specified bywhere.

whereThe WHERE clause as aweb.database list as returned bycursor.where() . If whereis a
string it is converted to the correct format.

orderThe ORDER BY clause as aweb.database list as returned bycursor.order() . If order is a
string it is converted to the correct format.

executeIf False the method returns the SQL string needed to perform the desired operations. IfTrue the
SQL is executed and the results converted and returned in the appropriate form. If not specified takes
the value specified in the cursor which by default isTrue

fetchWhether or not to fetch the results. IfTrue andexecuteis not specifiedexecuteis set toTrue . If
True andexecuteFalse an error is raised.

**paramsThe parameters to be passed to thefetchall() method iffetchis True

To select some information from a database using an SQL string you would use the following command:

SELECT column_name(s) FROM table_name

For example consider the table below:

Table Person
+----------+-----------+---------+-------------+
| LastName | FirstName | Address | DateOfBirth |
+----------+-----------+---------+-------------+
| Smith | John | Bedford | 1980-01-01 |
+----------+-----------+---------+-------------+
| Doe | John | Oxford | 1981-12-25 |
+----------+-----------+---------+-------------+

To retrieve a list of the surnames and dates of birth of all the people in the table you would use the following code:

rows = cursor.select(
columns = [’LastName’, ’DateOfBirth’],
tables = [’Person’],
format = ’object’,

)

Note: If you have specifiedfetchasFalse in the cursor constructor you would need to specifyfetchasTrue
here to fetch the results, otherwise you would need to userows = cursor.fetchall() to actually fetch
the results.

Since we have specifiedformatas’object’ , the result from this call would be a tuple of TupleDescriptor objects
which can be treated as a tuple or a dictionary:

>>> for record in rows:
... print record[0], record[1]
... print record[’LastName’], record[’DateOfBirth’]
...
Smith 1980-01-01
Smith 1980-01-01
Doe 1981-12-25
Doe 1981-12-25

1.4. web.database — SQL database layer 39

Using theselect() method, information you select from a field is automatically converted to the correct Python
type. Integer fields return Integers, Date fields returndatetime.date objects.

The where Parameter The example above selected everyLastName and DateOfBirth field from the
table. To limit the information selected you need to specify thewhere parameter in the same way you would for
any SQL query.

>>> rows=cursor.select(columns=[’LastName’],tables=[’Person’],where="LastName=’Smith’")
>>> for record in rows:
... print record[’LastName’], record[’DateOfBirth’]
...
’Smith’

We had to specify the valueSmith as properly encoded SQL since we specified the where clause as a string.
Alternatively we could have used thecursor.where() method to help instead.

where (where,[values=[]])
Return a parsedWHEREclause suitable for use in theselect() , update() anddelete() methods of
thecursor object.

whereA string containing theWHEREclause. Can include theLIKE operator which is used as follows:

WHERE columnName LIKE %s1%s2%s

Every % sign is matched against zero or more characters.

Note: whereshould not include the string’WHERE’ at the beginning.

valuesA list of values to substitute for? parameters in theWHEREclause

More complex expressions can also be built into where clauses. See the SQL Reference section for full informa-
tion.

The order Parameter You can specify the order in which the results are sorted using theorder parameter. It
is used as follows:

>>> for record in cursor.select(’LastName’, ’Person’, order="’LastName’"):
... print record[’LastName’]
...
’Doe’
’Smith’
>>> for record in cursor.select(’LastName’, ’Person’, order="LastName DESC"):
... print record[’LastName’]
...
’Smith’
’Doe’

Note that by placing the wordDESCafter the column to order by, the order is reversed.

You can place a number of Columns after each other. For exampleorder="LastName DESC
DateOfBirth" could be used to order the results in decending order byLastName and if any results have
the same last name, order them byDateOfBirth .

Alternatively we could have used thecursor.order() method to help instead.

order (order)
Return a parsedORDER BYclause suitable for use in theselect() method of thecursor object.

orderA string containing theORDER BYclause.Note: order should not include the string’ORDER BY’
at the beginning.

40 Chapter 1. Web Modules

Disabling Execute If you do not want the SQL to actually be executed you can set theexecute parameter of
theselect() method toFalse . You can then manually execute it usingcursor.execute() .

>>> sql = cursor.select(columns=[’LastName’, ’DateOfBirth’], tables=[’Person’], execute=False)
>>> sql
’SELECT LastName, DateOfBirth FROM Person’
>>> cursor.execute(sql)
>>> cursor.fetchall()
((’Smith’,’1980-01-01’),(’Doe’,’1981-12-25’))

Using Joins The select() allows you to select information from multiple tables. In order to do this you
must specify the tables you wish to select from as a list or tuple and use the fully qualified column name for each
table you want to column you want to select from.

For example:

>>> rows = cursor.select(
... columns = [’table1.LastName’, ’table2.Surname’],
... tables = [’table1’,’table2’],
... where = "table1.Surname = table2.Surname",
... format = ’dict’,
...)
>>> print rows[0][’table2.Surname’]
’Smith’

Inserting Data

The insert method looks like this:

The insert() method of aweb.database cursor looks like this:

insert (table, columns, values, sqlValues,[execute])
Insert values into the columns in table. Eithervaluesor sqlValuescan be specified but not both.

tableThe name of the table to insert into

columnsA sequence of column names in the same order as the values which are going to be inserted into
those columns. Can be a string if only one column is going to have values inserted

valuesA sequence of Python values to be inserted into the columns named in thecolumnsvariable. Can
be the value rather than a list if there is only one value. Ifvaluesis specified thensqlValuesmust be
either an empty sequence or contain a list of all quoted SQL strings for the columns specified in which
casevaluescontains the Python values of the SQL strings to be substituted for? parameters in the
sqlValuessequence.

sqlValuesA sequence of quoted SQL strings to be inserted into the columns named in thecolumnsvariable.
Can be the value rather than a list if there is only one value. IfsqlValuesis specified and contains?
parameters for substitution thenvaluescontains the values to be substituted. Otherwisevaluesmust
be an empty sequence.

executeIf False the method returns the SQL string to perform the desired operations. IfTrue the SQL is
executed. If not specified takes the value specified in the cursor which by default isTrue

To insert data into a table using SQL you would use the following command:

INSERT INTO table_name (column1, column2,...)
VALUES (value1, value2,....)

For example consider the table used to demonstrate theselect() method:

1.4. web.database — SQL database layer 41

+----------+-----------+---------+-------------+
| LastName | FirstName | Address | DateOfBirth |
+----------+-----------+---------+-------------+

The SQL command to insert some information into the table might look like this:

INSERT INTO Person (LastName, FirstName, Address, Age)
VALUES (’Smith’, ’John’, ’5 Friendly Place’, ’1980-01-01’)

To insert the data using aweb.database cursor we would do the following:

cursor.insert(
table = ’Person’,
columns = [’LastName’, ’FirstName’, ’Address’, ’DateOfBirth’],
values = [’Smith’, ’John’, ’5 Friendly Place’, datetime.date(1980,1,1)],

)

Note: We specify the field values as real Python objects. The date was specified as adate object and was
automatically converted. Python 2.2 users can also useimport datetime if they have first usedimport
web as the web modules come with a compatibility module.

The table now looks like this:

+----------+-----------+------------------+-------------+
| LastName | FirstName | Address | DateOfBirth |
+----------+-----------+------------------+-------------+
| Smith | John | 5 Friendly Place | 1980-01-01 |
+----------+-----------+------------------+-------------+

Updating Data

For example consider the table we created earlier:

table Person
+----------+-----------+------------------+-------------+
| LastName | FirstName | Address | DateOfBirth |
+----------+-----------+------------------+-------------+
| Smith | John | 5 Friendly Place | 1980-01-01 |
+----------+-----------+------------------+-------------+

The SQL command to change every address in the table to ’6 London Road’ is:

UPDATE Person SET Address = ’6 London Road’

To update the data using aweb.database cursor we would do the following:

cursor.update(table=’Person’,columns=[’Address’],values=[’6 London Road’])

The table now looks like this:

42 Chapter 1. Web Modules

+----------+-----------+---------------+-------------+
| LastName | FirstName | Address | DateOfBirth |
+----------+-----------+---------------+-------------+
| Smith | John | 6 London Road | 1980-01-01 |
+----------+-----------+---------------+-------------+

Theupdate() method of aweb.database cursor looks like this:

update (table, columns, values, sqlValues[, where] [, execute])
Update the columns in table with the values. Eithervaluesor sqlValuescan be specified but not both.

tableA string containing the name of the table to update

columnsA sequence of column names in the same order as the values which are going to be updated in those
columns. Can be a string if only one column is going to have values inserted

valuesA sequence of Python values to be inserted into the columns named in thecolumnsvariable. Can
be the value rather than a list if there is only one value. Ifvaluesis specified thensqlValuesmust be
either an empty sequence or contain a list of all quoted SQL strings for the columns specified in which
casevaluescontains the Python values of the SQL strings to be substituted for? parameters in the
sqlValuessequence. If there are more values specified invaluesthansqlValuesthe remaining values
are used to substitute for? parameters inwhere.

sqlValuesA sequence of quoted SQL strings to be inserted into the columns named in thecolumnsvariable.
Can be the value rather than a list if there is only one value. IfsqlValuesis specified and contains?
parameters for substitution thenvaluescontains the values to be substituted. Otherwisevaluesmust
be an empty sequence.

whereThe WHERE clause as aweb.database list as returned bycursor.where() . If whereis a
string it is converted to the correct format.

executeIf False the method returns the SQL string to perform the desired operations. IfTrue the SQL is
executed. If not specified takes the value specified in the cursor which by default isTrue

Deleting Data

For example consider the table we created earlier:

table Person
+----------+-----------+------------------+-------------+
| LastName | FirstName | Address | DateOfBirth |
+----------+-----------+------------------+-------------+
| Smith | John | 5 Friendly Place | 1980-01-01 |
| Owen | Jones | 4 Great Corner | 1990-01-01 |
+----------+-----------+------------------+-------------+

The SQL command to delete every address in the table is:

DELETE FROM Person

To delete all the data using aweb.database cursor we would do the following:

cursor.delete(table="Person")

Note: This does not delete the table, it deletes all the data. To drop the table use thedrop() method.

The table now looks like this:

1.4. web.database — SQL database layer 43

+----------+-----------+---------+-------------+
| LastName | FirstName | Address | DateOfBirth |
+----------+-----------+---------+-------------+
+----------+-----------+---------+-------------+

To delete only some of the data you need to specify thewhereparameter. For example to delete all people with
the first name’Owen’ we would use the SQL:

DELETE FROM Person WHERE FirstName=’Owen’

Similarly the function to use to execute this SQL command is:

cursor.delete(table="Person", where="FirstName=’Owen’")

The table now looks like this:

+----------+-----------+------------------+-------------+
| LastName | FirstName | Address | DateOfBirth |
+----------+-----------+------------------+-------------+
| Smith | John | 5 Friendly Place | 1980-01-01 |
+----------+-----------+------------------+-------------+

Thedelete() method of aweb.database cursor looks like this:

delete (table,[values=[]][, where] [, execute])
Delete records from the table according towhere.

tableA string containing the name of the table to select from or if selecting from multiple tables, a sequence
of table names.

valuesA list of values to substitute for? in theWHEREclause specified bywhere.

whereThe WHERE clause as aweb.database list as returned bycursor.where() . If whereis a
string it is converted to the correct format.

executeIf False the method returns the SQL string to perform the desired operations. IfTrue the SQL is
executed. If not specified takes the value specified in the cursor which by default isTrue

Creating Tables

To create a table in SQL you would use the following command:

CREATE TABLE table_name
(

column_name1 data_type,
column_name2 data_type,
etc...

)

For example:

44 Chapter 1. Web Modules

CREATE TABLE Person
(

LastName varchar,
FirstName varchar,
Address varchar,
Age int

)

To create the table above using aweb.database cursor we would use thecursor.column() helper method:

column (name, type[, required=0][, unique=0][, primaryKey=0][, foreignKey=None][, default=None])
Return a column tuple suitable for use in the columns tuple used in thecreate() method.

Bool , Float , Binary andText columns cannot be used as primary keys or unique columns.Binary
andText columns cannot have default values.

nameThe name of the field as a string.

typeThe field type. This can take one of the values:’Bool’ , ’String’ , ’Text’ , ’Binary’ , ’Long’ ,
’Integer’ , ’Float’ , ’Date’ , ’Time’ , ’Datetime’

requiredWhether or not the field is required. Setting toTrue means the field cannot haveNULLvalues.

uniqueSet toTrue if the value must be unique. Two fields in the column cannot have the same value unless
that value is NULL

primaryKeyThe field is to be used as a primary key, the field has the same behaviour as being unique and
required but no default value can be set

foreignKeyThe field is to be used as a foreign key, the value should be the name of the table for which this is
a child table.Note: There is no need to specify the column name as tables can only have one primary
key.

defaultThe default value for the field to be set to. If not specified the default is NULL

For example:

cursor.create(
table = ’Person’,
columns = [

cursor.column(name=’LastName’, type=’String’),
cursor.column(name=’FirstName’, type=’String’),
cursor.column(name=’Address’, type=’String’),
cursor.column(name=’Age’, type=’Integer’),

],
)

The create() method takes the table name as the first argument and then a sequence column dictionaries
returned from thecursor.column() method as the second argument.

Here is a more complicated example:

cursor.create(
table = ’Person’,
columns = [

cursor.column(name=’LastName’, type=’String’, required=True, unique=True),
cursor.column(name=’FirstName’, type=’String’, default=’Not Specified’),
cursor.column(name=’Address’, type=’String’),
cursor.column(name=’Age’, type=’Integer’),

],
)

1.4. web.database — SQL database layer 45

In this example we specified that theLastName must always be entered, does not have a default value and must
be unique so that no two people in the database can have the sameLastName . We have also specified that
FirstName is not required and is not unique. If no value is entered forFirstName the field should be set to
the stringNot Specified .

In mysql This would create the following table:

mysql> describe Person;
+-------------+--------------+------+-----+---------------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+--------------+------+-----+---------------+-------+
LastName	varchar(255)		PRI		
FirstName	varchar(255)	YES		Not Specified	
Address	varchar(255)	YES		NULL	
DateOfBirth	date	YES		NULL	
+-------------+--------------+------+-----+---------------+-------+
4 rows in set (0.00 sec)

Thecreate() method of aweb.database cursor looks like this:

create (table, columns[, values=[]] [, execute])
Create table with fields specified by fields. fields is a tuple of field tuples which can be obtained as follows:

columns = [
cursor.column(field options...),
cursor.column(field options...),
cursor.column(field options...),
cursor.column(field options...),

]

tableThe table name as a string.

columnsA sequence of field tuples returned bycursor.column()

valuesA sequence of values to substitute for default values in the columns

executeIf False the method returns the SQL string to perform the desired operations. IfTrue the SQL is
executed. If not specified takes the value specified in the cursor which by default isTrue

Dropping Tables

Warning: Dropping a table in SQL means removing the table from the database and therefore losing all the data
it contained.

To drop (or remove) a table in SQL you would use the following command:

DROP TABLE table_name

For example:

DROP TABLE Person

To drop the table above using aweb.database cursor we would use the following code:

cursor.drop(’Person’)

Thedrop() method of aweb.database cursor looks like this:

46 Chapter 1. Web Modules

drop (table[, execute])
Remove a table

tableA string containing the name of the table to drop.

executeIf False the method returns the SQL string to perform the desired operations. IfTrue the SQL is
executed. If not specified takes the value specified in the cursor which by default isTrue

Functions

Thecursor objects currently support two function methods:max() , min() andcount() as described below.

max(table, column[,where=None][,values=[]])
Returns the highest value of the column.

tableThe name of the table

columnThe name of the column

whereAn optional where clause

valuesValues to substitute for? parameters in the where clause.

min (table, column[,where=None][,values=[]])
Returns the lowest value of the column.

tableThe name of the table

columnThe name of the column

whereAn optional where clause

valuesValues to substitute for? parameters in the where clause.

count (table, column[,where=None][,values=[]])
Count the number of rows in the table matchingwhere. If whereis not specified, count all rows.

tableThe name of the table

columnThe name of the column

whereAn optional where clause

valuesValues to substitute for? parameters in the where clause.

For example consider the table below:

Numbers
+--------+
| Number |
+--------+
| 1 |
+--------+
| 2 |
+--------+
| 3 |
+--------+

>>> cursor.max(table=’Numbers’, column=’Number’)
3
>>> cursor.min(table=’Numbers’, column=’Number’)
1
>>> cursor.max(table=’Numbers’, column=’Number’, where="Number<?", values=[3])
2

1.4. web.database — SQL database layer 47

1.4.11 Supported Databases

The currently supported databases include:

SQLite Stores database in local text files. Full support.

SnakeSQL Pure Python SQL database. Used in the PythonWeb examples. Full support.

MySQL Supported through the MySQLdb module which is included with the web modules. Doesn’t support
transactions or foreign key constraint checks.

Other databases with varying levels of support:

PostgreSQL Support is planned but the authour has no access to a Postgres database so cannot yet write the
wrapper.

ODBC Partially implemented, not yet available. All ODBC databases including MS Access are supported
through themx.ODBCdriver available fromhttp://www.egenix.com/. You will first need to indtall the
mx.BASE package.

MySQL

Warning: TheMySQLdbmodule on which the MySQL driver is based automatically commits any changes you
have made to the database when the script exits, regardless of whether you have explicitly committed the changes
in the code. This is different to the behaviour of the other databases and may catch you out so please be aware it
is going on. (If anyone knows how to fix this please, please let the authour know!)

Also, MySQL doesn’t explicitly check the foreign key constraints and so won’t let you know you try an operation
which would break those constriants.

SQLite

The SQLite implemenation appears robust and fully supports the entire specification.

Warning: TheDate , Time andDateTime fields all use SQLiteText fields and not the correspondingDate
fields so if you have an existing pysqlite database these fields my not be compatible. This may be changed in
future releases of the modules.

ODBC

Implementation not finished. I’m having problems finding an SQL syntax guide to ODBC so that I can implement
correct table create statements. Any ideas would be appreciated.

1.4.12 Example Code

Below is a script to test the database layer. It demonstrates the use of some of the commands:

#!/usr/bin/env python

import sys; sys.path.append(’../../../’) # show python where the modules are

import web.database
connection = web.database.connect(

adapter="snakesql",
database="database",
autoCreate = 1,

)

48 Chapter 1. Web Modules

cursor = connection.cursor()

import datetime

Crete a table using the DB-API 2.0 interface and inset some information
cursor.execute(’CREATE TABLE test(columnDate Date, columnString String)’)
cursor.execute(

"INSERT INTO test (columnDate, columnString) VALUES (?, ’This i\\s a str’’ing with some awkward quoting’)",
datetime.date(2005,01,27)

)
Retrieve the information
cursor.execute("SELECT * from test WHERE columnDate = ’2005-01-27’")
print cursor.fetchall(format=’dict’)

Update the row using the abstraction interface and retrieve the information
cursor.update(

table = ’test’,
columns = [’columnString’],
values = ["James’s New String conta\\\\ining an apostrophe and awkward quoting"],

)
print cursor.select(columns=’*’, tables=[’test’])

connection.close() # Close the connection without saving changes

1.4.13 API Reference

Warning: Developers using theweb.database API should always specify values in methods by name and
not rely on the position of parameters as the API may change in future versions.

Module Interface

Access to the database is made available through connection objects. Theweb.database module provides the
following constructor for these:

connect (driver,[database,][user,][password,][host,][port,][socket,][**params])
Constructor for creating a connection to a database. Returns aConnection object. Not all databases will
use all the parameters, but databases should use the parameters specified and not abbreviated versions. Any
more complex parameters are passed directly to the driver’sconnect() method.

driverThe type of database to connect to. Can currently be’MySQLdb’ , ’PySQLite’ or
’web.database ’ but it is hoped that most database drivers will eventually be supported.

databaseThe database name to connect to.

userThe username to connect with.

passwordThe password to use.

hostThe host to connect to if the database is running on a remote server.

portThe port to connect to if the database is running on a remote server.

socketThe socket to connect to if the database is running locally and requires a socket.

**paramsAny other parameters to be passed to the driver

web.database implementers will usually override the methodmakeConnection() to provide this func-
tionality as is clear from the source code.

These module globals are also be defined:

version String constant stating the supported DB API level.

version info A tuple in the same format assys.version info for example something like
(2,4,0,rc1,’beta’)

1.4. web.database — SQL database layer 49

Connection Objects

Connection objects respond to the following methods as defined in the DB-API 2.0close() , commit()
androllback() . Thecommit() androllback() methods should work as specified in the DB-API 2.0.
Even if the database engine doesn’t directly support transactions, these facilities should be emulated.

Connection objects also have acursor() method.

cursor ([execute=True], [format=’tuple’], [convert=True], [mode=’portable’])
The default values which the cursor abstraction methods will take for the values ofexecute, format and
convertcan be set using this method.

formatThis can be’tuple’ to return the results as a tuples,’text’ to return as text wrapped to 80
characters for display in a terminal,’dict’ to return the results as dictionaries or’object’ to
return the results as result objects to be treated as dictionaries, tuples or via attribute access.

convertConvert the results to standard formats (should beTrue for most users)

executeUsed in the cursor SQL methods. IfTrue then rather than returning an SQL string, the methods
execute the results

modeThe default mode for theexecute() method. Can be’portable’ to use the SQL abstraction
methods or’direct’ to send the SQL directly to the underlying cursor.

Connection objects also have the following attributes:

tables A dictionary ofTable objects with their names as the keys

converters A dictionary of field converter objects for all supported database types.

baseConnection The DB-API 2.0Connection object

Cursor Objects

close ()
Close the cursor now (rather than wheneverdel is called). The cursor will be unusable from this point
forward; an Error (or subclass) exception will be raised if any operation is attempted with the cursor.

export (tables,[includeCreate=True])
Export the tables specified bytablesas portable SQL including statements to create the tables ifinclude-
Createis True .

Importing the SQL is then simply a matter of executing the SQL. Here is an example:

backup = cursor.export(tables=[’testTable’])
cursor.drop(table=’testTable’)
for sql in backup.split(’\n’):

cursor.execute(sql, mode=’portable’)

ThetestTable should be exactly the same as it was before the code was executed.

Cursor objects have the following attributes:

connection
This read-only attribute return a reference to the Connection object on which the cursor was created. The
attribute simplifies writing polymorph code in multi-connection environments.

info
A list of Column objects for in the order of the fields from the lastSELECTor None if the last SQL
operation was not aSELECT. Column objects contain all the information about a particular field and
provide conversion methods for that field.

baseCursor
The DB-API 2.0Cursor object

sql
A list of tuples of parameters passed to theexecute() methods

50 Chapter 1. Web Modules

Execute SQL web.database compliant databases support qmark style parameters for substitutions as fol-
lows:

cursor.execute(’SELECT * FROM Test WHERE columnName=?’,[’textEntry’])

execute (sql[, parameters][,mode])
Prepare and execute a database operation. Parameters are provided as a sequence and will be bound to?
variables in the operation.modecan be’direct’ to pass the parameters to the underlying DB-API 2.0
cursor or’portable’ to execute the code in a portable fashion.

executemany (sql, manyParameters[,mode])
Similar toexecute() but the operation is executed for each sequence inmanyParameters.

Fetch Results All these methods take the parametersformat andconvert. If they are not specified the values
set in thecursor() method of theConnection object is used.

fetchone ([format],[convert])
Fetch the next row of a query result set, returning a single sequence, or None when no more data is available.
[6]

An Error (or subclass) exception is raised if the previous call to executeXXX() did not produce any result
set or no call was issued yet.

formatThe format of the results returned. Can be’dict’ to return them as a tuple of dictionary objects,
’tuple’ to return them as a tuple of tuples,’object’ to return them as a tuple ofdtuple objects
which can be treated as a tuple or a dictionary (or via attribute access for the majority of column
names) or’text’ to return tables designed to be displayed in a terminal 80 characters wide. If not
specified takes the value specified in the cursor which by default is’tuple’

convertCan beTrue to convert the results to the correct types,False to leave the results as they are
returned from the base cursor. If not specified takes the value specified in the cursor which by default
is True

fetchall ([format],[convert])
Fetch all (remaining) rows of a query result, returning them as a sequence of sequences (e.g. a list of tuples).

An Error (or subclass) exception is raised if the previous call to anexecute() method did not produce
any result set or no call was issued yet.

The valuesformatandconvertare as specified infetchone()

Cursor Abstraction Methods It is assumed that ifexecuteis True in the following methods then you wish to
be executing the code in portable mode, otherwise it is unlikely you would be using abstraction methods.

If you did wish to execute code in direct mode (through the DB-API 2.0 cursor) you could do the following:

sql = cusror.select(columns=[’*’], tables=[’table’], execute=False)
cursor.execute(sql, mode=’direct’)

Warning: It is possible to get the cursor abstraction methods to perform operations they were not designed for.
For example, incursor.select() you could specify one of the columns as’AVG(columnName)’ . This
would produce an SQL statement which would return the mean value of the columncolumnName on some
databases but certainly not on all and therefore breaks the specification which states that columns should be a list
of column names. To ensure database portability please stick to the published API.

select (tables, columns,[values=[],][where=None,][order=None,][execute=None,][fetch=None,
][**params])

Build an SQL string according to the options specified and optionally execute the SQL and return the results
in the format specified. No error checking on field names if the SQL string is only being built. Strict error
checking is only performed when executing the code.

1.4. web.database — SQL database layer 51

tablesA string containing the name of the table to select from or if selecting from multiple tables, a sequence
of table names.

columnsA sequence of column names to select. Can be a string if only one column is being selected. If se-
lecting from multiple tables, all column names should be in the form’tableName.columnName’

valuesA list of values to substitute for? in theWHEREclause specified bywhere.

whereThe WHERE clause as aweb.database list as returned bycursor.where() . If whereis a
string it is converted to the correct format.

orderThe ORDER BY clause as aweb.database list as returned bycursor.order() . If order is a
string it is converted to the correct format.

executeIf False the method returns the SQL string needed to perform the desired operations. IfTrue the
SQL is executed and the results converted and returned in the appropriate form. If not specified takes
the value specified in the cursor which by default isTrue

fetchWhether or not to fetch the results. IfTrue andexecuteis not specifiedexecuteis set toTrue . If
True andexecuteFalse an error is raised.

**paramsThe parameters to be passed to thefetchall() method iffetchis True

insert (table, columns, values, sqlValues,[execute])
Insert values into the columns in table. Eithervaluesor sqlValuescan be specified but not both.

tableThe name of the table to insert into

columnsA sequence of column names in the same order as the values which are going to be inserted into
those columns. Can be a string if only one column is going to have values inserted

valuesA sequence of Python values to be inserted into the columns named in thecolumnsvariable. Can
be the value rather than a list if there is only one value. Ifvaluesis specified thensqlValuesmust be
either an empty sequence or contain a list of all quoted SQL strings for the columns specified in which
casevaluescontains the Python values of the SQL strings to be substituted for? parameters in the
sqlValuessequence.

sqlValuesA sequence of quoted SQL strings to be inserted into the columns named in thecolumnsvariable.
Can be the value rather than a list if there is only one value. IfsqlValuesis specified and contains?
parameters for substitution thenvaluescontains the values to be substituted. Otherwisevaluesmust
be an empty sequence.

executeIf False the method returns the SQL string to perform the desired operations. IfTrue the SQL is
executed. If not specified takes the value specified in the cursor which by default isTrue

insertMany (table, columns, values, sqlValues,[execute])
Same asinsert() except thatvaluesorsqlValuescontain a sequence of sequences of values to be inserted.

update (table, columns, values, sqlValues[, where] [, execute])
Update the columns in table with the values. Eithervaluesor sqlValuescan be specified but not both.

tableA string containing the name of the table to update

columnsA sequence of column names in the same order as the values which are going to be updated in those
columns. Can be a string if only one column is going to have values inserted

valuesA sequence of Python values to be inserted into the columns named in thecolumnsvariable. Can
be the value rather than a list if there is only one value. Ifvaluesis specified thensqlValuesmust be
either an empty sequence or contain a list of all quoted SQL strings for the columns specified in which
casevaluescontains the Python values of the SQL strings to be substituted for? parameters in the
sqlValuessequence. If there are more values specified invaluesthansqlValuesthe remaining values
are used to substitute for? parameters inwhere.

sqlValuesA sequence of quoted SQL strings to be inserted into the columns named in thecolumnsvariable.
Can be the value rather than a list if there is only one value. IfsqlValuesis specified and contains?
parameters for substitution thenvaluescontains the values to be substituted. Otherwisevaluesmust
be an empty sequence.

whereThe WHERE clause as aweb.database list as returned bycursor.where() . If whereis a
string it is converted to the correct format.

52 Chapter 1. Web Modules

executeIf False the method returns the SQL string to perform the desired operations. IfTrue the SQL is
executed. If not specified takes the value specified in the cursor which by default isTrue

delete (table,[values=[]][, where] [, execute])
Delete records from the table according towhere.

tableA string containing the name of the table to select from or if selecting from multiple tables, a sequence
of table names.

valuesA list of values to substitute for? in theWHEREclause specified bywhere.

whereThe WHERE clause as aweb.database list as returned bycursor.where() . If whereis a
string it is converted to the correct format.

executeIf False the method returns the SQL string to perform the desired operations. IfTrue the SQL is
executed. If not specified takes the value specified in the cursor which by default isTrue

create (table, columns[, values=[]] [, execute])
Create table with fields specified by fields. fields is a tuple of field tuples which can be obtained as follows:

columns = [
cursor.column(field options...),
cursor.column(field options...),
cursor.column(field options...),
cursor.column(field options...),

]

tableThe table name as a string.

columnsA sequence of field tuples returned bycursor.column()

valuesA sequence of values to substitute for default values in the columns

executeIf False the method returns the SQL string to perform the desired operations. IfTrue the SQL is
executed. If not specified takes the value specified in the cursor which by default isTrue

drop (table[, execute])
Remove a table

tableA string containing the name of the table to drop.

executeIf False the method returns the SQL string to perform the desired operations. IfTrue the SQL is
executed. If not specified takes the value specified in the cursor which by default isTrue

function (function, table, column,[,where=None][, values=[]])
Returns the result of applying the specified function to the field

functionThe function to be applied, can be’max’ , ’min’ , ’sum’ or ’count’

tableThe name of the table

columnThe name of the field

whereAn optional where clause

valuesA list of values to substitute for? parameters in theWHEREclause

max(table, column[,where=None][,values=[]])
Returns the highest value of the column.

tableThe name of the table

columnThe name of the column

whereAn optional where clause

valuesValues to substitute for? parameters in the where clause.

min (table, column[,where=None][,values=[]])
Returns the lowest value of the column.

tableThe name of the table

1.4. web.database — SQL database layer 53

columnThe name of the column

whereAn optional where clause

valuesValues to substitute for? parameters in the where clause.

count (table, column[,where=None][,values=[]])
Count the number of rows in the table matchingwhere. If whereis not specified, count all rows.

tableThe name of the table

columnThe name of the column

whereAn optional where clause

valuesValues to substitute for? parameters in the where clause.

Helper Methods Helper methods build the data structures which should be passed to theCursor abstraction
methods.

column (name, type[, required=0][, unique=0][, primaryKey=0][, foreignKey=None][, default=None])
Return a column tuple suitable for use in the columns tuple used in thecreate() method.

Bool , Float , Binary andText columns cannot be used as primary keys or unique columns.Binary
andText columns cannot have default values.

nameThe name of the field as a string.

typeThe field type. This can take one of the values:’Bool’ , ’String’ , ’Text’ , ’Binary’ , ’Long’ ,
’Integer’ , ’Float’ , ’Date’ , ’Time’ , ’Datetime’

requiredWhether or not the field is required. Setting toTrue means the field cannot haveNULLvalues.

uniqueSet toTrue if the value must be unique. Two fields in the column cannot have the same value unless
that value is NULL

primaryKeyThe field is to be used as a primary key, the field has the same behaviour as being unique and
required but no default value can be set

foreignKeyThe field is to be used as a foreign key, the value should be the name of the table for which this is
a child table.Note: There is no need to specify the column name as tables can only have one primary
key.

defaultThe default value for the field to be set to. If not specified the default is NULL

where (where,[values=[]])
Return a parsedWHEREclause suitable for use in theselect() , update() anddelete() methods of
thecursor object.

whereA string containing theWHEREclause. Can include theLIKE operator which is used as follows:

WHERE columnName LIKE %s1%s2%s

Every % sign is matched against zero or more characters.

Note: whereshould not include the string’WHERE’ at the beginning.

valuesA list of values to substitute for? parameters in theWHEREclause

order (order)
Return a parsedORDER BYclause suitable for use in theselect() method of thecursor object.

orderA string containing theORDER BYclause.Note: order should not include the string’ORDER BY’
at the beginning.

54 Chapter 1. Web Modules

Table Objects

Table objects can be accessed through thetables attribute of theConnection object like this:

>>> print connection.tables[’tableName’].name
tableName
>>> print connection.tables[’tableName’][’columnName’].name
columnName

classTable
Table objects store all the meta data there is to know about an SQL table. They are created by the
web.database module and should not be created manually. They are simply structures to hold table
information. The values should not be changed.

Table objects have the following attributes:

name
The name of the table correctly capitalised

columns
A list of Column objects describing each column of the table

primaryKey
The name of the primary key column of the table orNone if no primary key is specified

parentTables
A list of the names of any tables for which the table has foreign key fields

childTables
A list of the names of any tables for which the table is a parent table

and the following methods:

has key (columnName)

columnExists (columnName)
ReturnsTrue if columnNameis the name of a column in the table

column (columnName)

getitem (columnName)
Returns the column object forcolumnName

Table objects can also contain any other useful methods which the module implementer feels are appropriate.

Column Objects

Column objects store all the information there is to know about a particular column.Column objects can be
accessed through theconnection.tables dictionary which contains all columns or throughcursor.info
which contains a tuple corresponding to theColumn objects selected after aSELECTstatement has been executed
in portable mode (orNone after any other SQL operation).

>>> cursor.select(columns=[’columnName’], tables=[’tableName’], execute=True)
>>> print cursor.info[0].name
columnName
>>> print cursor.info[0].table
tableName

classColumn name
The name of the column

type
The capitalised string representing the column type

1.4. web.database — SQL database layer 55

baseType
The capitalised string representing the column type of the base type

table
The table of which the column is a part

required
Can beTrue or False depending on whether or not the column value is required (i.e. cannot be
NULL)

unique
True if the field should be unique,False otherwise

key
True if the field is a primary key,False otherwise

default
The default value of the field

converter
A reference to theConverter object for the field type

position
The position of the field in the tuple returned bySELECT * FROM table

Converter Objects

Converter objects contain methods to convert values between SQL and Python objects and to convert values
returned by the database driver into the correct Python type.Converter objects are accessed through the
converter attribute of the correspondingColumn object.

Example: convert a list of values selected from a database to their SQL encoded equivalents

>>> cursor.select(columns=[’table1.columnOne’, ’table2.column2’], tables=[’table1’, ’table2’], execute=True)
>>> results = cursor.fetchall()
>>> record = results[0]
>>> newRecord = []
>>> for i in range(len(record)):
... newRecord.append(cursor.info[i].converter.valueToSQL(record[i]))

classConverter valueToSQL (value)
Convert a Python object to an SQL string

sqlToValue (value)
Convert the an SQL string to a Python object

databaseToValue (value)
Convert the value stored in the database to a Python object

valueToDatabase (value)
Convert a Python object to the format needed to store it in the database

type
A string representing the column type

sqlQuotes
True if the SQL representation should be quoted,False otherwise

Converter objects are also available as a dictionary with column types as the keys as theconverters at-
tribute of theConnection object.

56 Chapter 1. Web Modules

1.4.14 Developer’s Guide

Implementing the Classes

Virtually all the functionality of the API has been implemented as base classes from which module implementers
simply need to derive their own classes, over-riding methods to suit their particular database syntax as necessary.

In particular this requires writing custom converter methods to ensure that the database returns the correct values,
overriding themakeConnection() method to convertconnect() method parameters to the appropriate
form for the driver, and overriding the cursor abstraction methods so that they build the correct SQL strings from
the parameters.

web.database implementation comes with basic implementations for PySQLite,web.database and a par-
tial implementation for MySQLdb (transaction support isn’t implemented). These can all be used as examples.

If a particular database engine does not natively support part of the API it should be emulated in the derived classes
even if it is difficult or slow to do so.

Creating the Dictionary

The implementation should contain a dictionary nameddriver in the sub-package of the main module named
pdbc . So for example,web.database will have a moduleweb.database .pdbc which will contain a
dictionary nameddriver similar to the following:

driver = {
’converters’:{

’String’: base.BaseStringConverter(),
’Text’: base.BaseTextConverter(),
’Binary’: base.BaseBinaryConverter(),
’Bool’: base.BaseBoolConverter(),
’Integer’: base.BaseIntegerConverter(),
’Long’: base.BaseLongConverter(),
’Float’: base.BaseFloatConverter(),
’Date’: base.BaseDateConverter(),
’Datetime’: base.BaseDatetimeConverter(),
’Time’: base.BaseTimeConverter(),

}
’columnClass’:base.BaseColumn,
’tableClass’:base.BaseTable,
’cursorClass’:Cursor,
’connectionClass’:Connection,

}

WhereConnection andCursor are classes derived frombase.Connection andbase.Cursor respec-
tively.

1.4.15 Tools Under Development

This section describes certain tools based onweb.database which are currently under development.

Interactive Prompt

web.database makes it possible to write a MySQL-style interactive prompt applications to perform operations
on a database from a command prompt or over telnet or SSH. In this way the same command prompt application
can manipulate everyweb.database compliant database from the same application.

1.4. web.database — SQL database layer 57

Object-Relational Mapper

Once an SQL standard and fixed data types have been set it becomes easy to write an object relational mapper.
This also offers the opportunity to create custom field types based onweb.database ones.

Theweb.database API specifies a methodobject() of the connection object. This returns an object rela-
tional mapper already setup for the database being used so that if desired the database can be accessed entirely
without any knowledge of SQL:

sqlDictionary = connection.object()
table = sqlDictionary[’testTable’]
row = table[’testRow’]
name = row[’name’]
row[’birth’] = datetime.date(1980,10,10)

Web Based Admin

It also become possible to define HTML fields for each data type (and therefore each derivative data type) so that
web-based editing of aweb.database compliant database becomes very simple.

1.4.16 Future Additions

This section is just a list of currently excluded features which might be useful in the next version. They are in the
order of importance:

• Autoincrement Integer fields

• Support forUPDATE SET TOTAL = TOTAL + 100syntax

This is a list of things currently not included in the module but which may be of use later on:

• Make sure max and min work in all cursors for all field types

• Check table aliases actually work!

• Caching of all values to save on SQL calls

• Checking type conversions for ODBC and also the mx.DateTime issues

• Fixing and testing ofalter()

• Table copying code

• Executemany support

1.5 web.database.object — An object relation mapper built on the
web.database and web.form modules

Theweb.database.object module is an object-relational mapper. It allows you to simply define complex
database structures in Python code and then create the necessary tables automatically. It then allows you to
manipulate the Python objects you have defined to transparently manipulate the underlying database including the
facility to use multiple joins without knowing any SQL.

Furthermore the table column classes are derived fromweb.form.field objects which means you can
transparently create HTML interfaces to edit the data structures through a web browser. This makes

58 Chapter 1. Web Modules

web.database.object module ideal as a middle layer for writing data-driver websites although it has
broader uses as well.

A database object can in theory have any storage driver (text, XML, SQL Datbase, DBM) although currently only
a driver for theweb.database module has been written. This means that any storage system with a driver
for web.database can be used withweb.database.object . This currently includes MySQL, ODBC,
SQLite and, to an extent, Gadlfy.

1.5.1 Introduction

Requirements

To use web.database.object you need Python 2.2 or above and the Web Modules of which
web.database.object is a part and an SQL database supported by theweb.database module and its
associated Python driver. If you use MuSQL, a MySQL database is needed, alternatively use an ODBC database
such as MS Access. Theweb.database driver is included with the Python Web Modules but you will need to
download and install the ODBC driver from thehttp://www.eGenix.com site yourself as it comes with a non open
source licence.

Compared To Other Database Wrappers

There are several object-relational mappers for Python and a series of basic database wrappers similar to
web.database . The authour cannot comment deeply on these.

web.database.object is most similar to SQLObject available fromhttp://www.sqlobject.org in that it creates
objects that feel similar to normal Python objects and can be accessed and manipulated in a familiar way.

Modules like SQLObject andweb.database.object differ from modules such as PyDO or the
web.database module which simply provide more Python-like ways of executing SQL queries and then pack-
age up the database returns into more useable forms such as dictionaries. Theweb.database.object com-
pletely removes any need to know any SQL. You just manipulate the objects themselves and the rest is done for
you. This makes SQL programming extremely simple and still gives you full control over the information stored
in the database.

What separatesweb.database.object from some other software is the strong typing of the data. If you
are accessing the property of a Date field the object will be adatetime.Date object. If you are setting an
Email field, only strings in the format of an email address will be allowed. The module also direct support for
one-to-many and many-to-many mappings which means you can build complex data structures.

Because the software interfaces the database through aweb.database cursor (in principle it could interface
to other drivers as well) the code written will be database independant and run on any database supported by the
web.database module.

web.database.object uses classes derived fromTable , Database andweb.form.field classes to
facilitate this integration. Some ORMs use code generation to create an interface, expressing the schema in a
CSV or XML file (for example, MiddleKit, part of Webware). By using normal Python objects you are able to
comfortably define your database in the Python source code. No code generation, no weird tools, no compilation
step.

What truly separatesweb.database.object from any other ORM in any language (to the authour’s knowl-
edge - correct me please if I am wrong) is that on top of all the features mentioned above, the columns used to
store the SQL data are also instances ofweb.form.field.typed and the tables have the ability to generate
web.form Form objects. This means it is possible to create HTML interfaces to edit the database data automati-
cally and in such a way that the user can only enter valid data otherwise the user will be asked to make corrections.
This functionality makes building complex web databases much simpler.

1.5. web.database.object — An object relation mapper built on the web.database and
web.form modules

59

1.5.2 Introductory Example

Below is about the simplest possible example where a database object namedMyDatabase is created. The
database object is connected to an SQLite database namedobject-simple.db but could equally well be a
MySQL database or ODBC supported database like MS Access.

import web.database, web.database.object

connection = web.database.connect(type="sqlite",database="object-simple.db")
cursor = connection.cursor()

person = web.database.object.Table("Person")
person.addColumn(web.database.object.String(name="firstName"))
person.addColumn(web.database.object.String(name="surname"))

database = web.database.object.Database()
database.addTable(person)
database.init(cursor)

This first lines import the modules we need and make theweb.database connection. We could have made any
database connection supported by theweb.database module. Below are some other examples for the 3rd line.

connection = web.database.connect(type="odbc", database="AccessDatabase")
connection = web.database.connect(type="mysql", host="pythonweb.org", user="james", password="hello")

The database will contain one table namedPerson . The Person table has two columns, both of which are
String columns. One is namedfirstName and the othersurname . All web.database.object column
objects must take anameparameter and this is used as the column name.

Once we have finished defining our table we create aweb.database.object.Database() which will
be the object we use to manipulate the database. We add out table definition to the database definition using
database.addTable(person) and then initilise the database to associate it with the live databaseusing
database.init(cursor) .

Warning: Once a database object is initialised you cannot add any more tables or modify the database’s structure
in any way.

Now we have defined and initialised out database we can start using it. If the table does not already exist in the
live database we need to create it as follows:

if not database.tablesExist():
database.createTables()
print "Created Table"

This command creates every table the database needs (in our case just the one). If you decide to change the
structure of the tables at a later date after you have created the tables in the live database you will need to remove
them all usingdatabase.dropTables() and recreate them from scratch. This means you would loose all
the information so it is important to decide on the correct structure before creating the tables.

All information in the database can be accessed through a dictionary-like interface. For example the database
object acts like a dictionary of tables and each table acts like a dictionary of rows. Each row acts like a dictionary
of field values.

Now we have created the table we are free to add, edit and remove data. Following on from the previous example.

60 Chapter 1. Web Modules

>>> john = database[’Person’].insert(firstName="John", surname="Smith")
>>> print john[’firstName’]
John
>>> print john[’surname’]
Smith
>>> john[’surname’] = ’Doe’
>>> print john[’surname’]
Doe
>>> print john[’rowid’]
1

In this way you can create and modify the table information. Take note of the line>>> john[’rowid’] . Each
new object (which is equivalent to a row in the table) is given a unique integer number named therowid by which
it can be identified.

We can use this rowid to retrieve John Smith’s information from the database at a later time. There are two ways
to retrieve rows from the table using the rowid:

>>> row1 = database[’Person’][1]
>>> row2 = database[’Person’].row(1)
>>> print row1 == row2 == john
True

Once you have made changes to the database you will need to commit your changes using
connection.commit() otherwise your changes may be lost. By the end of this session our database table
looks like this:

Tables in the ’test’ database
+----------------+
| Tables_in_test |
+----------------+
| Person |
+----------------+

The Person table
+-------+-----------+---------+
| rowid | firstName | surname |
+-------+-----------+---------+
| 1 | John | Doe |
+-------+-----------+---------+

Thats about all there is to it!

Full Code Listing

Here is a complete code listing so that you can experiment:

#!/usr/bin/env python

import sys; sys.path.append(’../../../’) # show python where the modules are

import web.database, web.database.object
connection = web.database.connect(

adapter="snakesql",
database="database-object-simple",
autoCreate = 1,

)

1.5. web.database.object — An object relation mapper built on the web.database and
web.form modules

61

cursor = connection.cursor()

person = web.database.object.Table("Person")
person.addColumn(web.database.object.String(name="firstName"))
person.addColumn(web.database.object.String(name="surname"))

database = web.database.object.Database()
database.addTable(person)
database.init(cursor)

if not database.tablesExist():
database.createTables()
print "Created Table"

john = database[’Person’].insert(firstName="John", surname="Smith")
print john[’firstName’]
print john[’surname’]

john[’surname’] = ’Doe’
print john[’surname’]

print john[’rowid’]

row1 = database[’Person’][1]
row2 = database[’Person’].row(1)
print row1 == row2 == john

connection.close() # Close the connection without saving changes

The output is:

Created Table
John
Smith
Doe
1
1

Note: If you run the code more than once you will be adding lots of John Smiths to the test database and so the
rowid value will be one larger each time you run the code. After the first time you run the code the lineCreated
Table will not be output since the table will already be created.

Using Alternative Keys

In the example above we could access John Smith’s information as follows:

>>> row1 = database[’Person’][1]
>>> row2 = database[’Person’].row(1)

We could have defined thesurname column differently and added it like this instead:

person.addColumn(web.database.object.String(name="surname", unique=True, required=True, key=True))

This defines the surname as a unique, required field.uniquemeans that there cannot be two people with the same
surname in the database. If you try to add two people with the same name an Exception will be raised.required
means that you must always enter a surname, although in out example, becauserequired is not specified for the
firstName column, you would not have to enter a firstName.

62 Chapter 1. Web Modules

SpecifyingkeyasTrue for the surname tells the table that you want to be able to retrieve data from the database
based on the surname column rather than the rowid. We can now try the following:

>>> row1 = database[’Person’][’Smith’]
>>> row2 = database[’Person’].row(1)
>>> print row1 == row2
True

You can still access the information by rowid using therow() method.

Any column can be specified as a key but there can only be one column in each table specified as a key. Any
column specified as a key must also be specified as unique and required.

Available Columns

There are a number of column types available for use with theweb.database.object module. These include:
String , StringSelect , Text , Bool , Integer , IntegerSelect , Float , FloatSelect , Date ,
DateSelect , Time , TimeSelect , DateTime , DateTimeSelect , Email andURL

Each web.database.object column is derived for the correspondingweb.form.field field which
means it behaves in exactly the same way. You can see the available options in theweb.form.field doc-
umentation. Eachweb.database.object column has two more parameters in addition to those of its corre-
spondingweb.form.field . These areuniqueandkeydescribed in the previous example.

1.5.3 One-To-Many Mappings

One of the features that distinguishes this module from many others is its ability to deal with more complex
datastructures than just simple tables. As an example of a one-to-many mapping we will consider an address
book.

In our address book each person can have many addresses but each address is only associated with one person.
The data structure looks like this:

+-- Address 1
Person 1 ---|

+-- Address 2

To create a database to describe this struture we need two tables, a Person table and an Address table.

1.5. web.database.object — An object relation mapper built on the web.database and
web.form modules

63

import web.database, web.database.object
connection = web.database.connect(type="sqlite", database="object-multiple.db")
cursor = connection.cursor()

person = web.database.object.Table("Person")
person.addColumn(web.database.object.String(name="firstName"))
person.addColumn(web.database.object.String(name="surname"))
person.addMultiple(name="addresses", foreignTable="Address")

address = web.database.object.Table("Address")
address.addColumn(web.database.object.String(name="firstLine"))
address.addColumn(web.database.object.String(name="postcode"))
address.addSingle(name="person", foreignTable="Person")

database = web.database.object.Database()
database.addTable(person)
database.addTable(address)
database.init(cursor)

As in the introductory example we use theaddColumn() method to addColumn objects to the Address table.
This time however we also use theaddSingle() method to add a column namedperson to the table. We have
also usedaddMultiple() method to add a multiple join calledaddresses from the Person foreign table to
the Person table. The final change is that we have added theAddress table to the database.

Note: We in theaddSingle() andaddMultiple() methods we refer to theforeignTable by the string
representing its name and not the object itself.

When we access a person’saddresses key, we will get back a list of all the Address objects associated with
that person. Continuing the example above:

>>> john = database[’Person’].insert(firstName=’John’, surname=’Smith’)
>>> print john[’surname’]
Smith
>>> print john[’addresses’]
{}
>>> database[’Address’].insert(person=john, firstLine=’12 Friendly Place’, postcode=’OX4 1AB’)
>>> database[’Address’].insert(person=john, firstLine=’3a Crazy Gardens’, postcode=’OX1 2ZX’)
>>> for address in john[’addresses’].values:
... print address[’firstLine’]
...
12 Friendly Place
3a Crazy Gardens

Note how we specify the person to add the address to usingperson=john . We could alternatively have specified
the rowid of the person to add the address to. Just like the database, tables and rows, the value returned by
john[’addresses’] behaves like a dictionary. In this example we use thevalues() method to return a list of the
Rowobjects.

It should be noted that you cannot set the values of multiple columns like the’addresses’ column directly.
Instead you should set the values of each object induvidually.

>>> john[’addresses’] = something # XXX Doesn’t work!

Again you muct usecursor.commit() to commit the changes to the database.

Just for interest here is how the tables look in the live database. You can see that the person column in the Address
table contains the rowid in the Person table of the person to associate the address with.

64 Chapter 1. Web Modules

Tables in the ’test’ database
+----------------+
| Tables_in_test |
+----------------+
| Address |
| Person |
+----------------+

The Person table
+-------+-----------+---------+
| rowid | firstName | surname |
+-------+-----------+---------+
| 1 | John | Smith |
+-------+-----------+---------+

The Address table
+-------+-----------------------+----------+--------+
| rowid | firstLine | postcode | person |
+-------+-----------------------+----------+--------+
| 1 | 12 Friendly Place | OX4 1AB | 1 |
+-------+-----------------------+----------+--------+
| 2 | 3a Crazy Gardens | OX1 2ZX | 1 |
+-------+-----------------------+----------+--------+

Full Code Listing

Here is a complete code listing so that you can experiment:

#!/usr/bin/env python

import sys; sys.path.append(’../../../’) # show python where the modules are

import web.database, web.database.object
connection = web.database.connect(

adapter="snakesql",
database="database-object-multiple",
autoCreate = 1,

)
cursor = connection.cursor()

person = web.database.object.Table("Person")
person.addColumn(web.database.object.String(name="firstName"))
person.addColumn(web.database.object.String(name="surname"))
person.addMultiple(name="addresses", foreignTable="Address")

address = web.database.object.Table("Address")
address.addColumn(web.database.object.String(name="firstLine"))
address.addColumn(web.database.object.String(name="postcode"))
address.addSingle(name="person", foreignTable="Person")

database = web.database.object.Database()
database.addTable(person)
database.addTable(address)
database.init(cursor)

if not database.tablesExist():
database.createTables()
print "Created Table"

else:

1.5. web.database.object — An object relation mapper built on the web.database and
web.form modules

65

raise Exception(’Tables not created’)
john = database[’Person’].insert(firstName=’John’, surname=’Smith’)
print john[’surname’]
print john[’addresses’]

database[’Address’].insert(person=john, firstLine=’12 Friendly Place’, postcode=’OX4 1AB’)
database[’Address’].insert(person=john, firstLine=’3a Crazy Gardens’, postcode=’OX1 2ZX’)

for address in john[’addresses’].values():
print address[’firstLine’]

connection.close() # Close the connection without saving changes

The output is:

Created Table
Smith
{}
12 Friendly Place
3a Crazy Gardens

You will need to delete the database file ‘object-multiple.db’ each time you run the cose so that it can be recreated
each time.

1.5.4 Many-To-Many Mappings

In a real life more than one person might live at the same address and each person might have multiple addresses.
The relationship is actually a many-to-many mapping. Have a look at the code below:

import web.database, web.database.object
connection = web.database.connect(type="sqlite", database="object-multiple.db")
cursor = connection.cursor()

person = web.database.object.Table("Person")
person.addColumn(web.database.object.String(name="firstName"))
person.addColumn(web.database.object.String(name="surname"))
person.addRelated(name="addresses", foreignTable="Address")

address = web.database.object.Table("Address")
address.addColumn(web.database.object.String(name="firstLine"))
address.addColumn(web.database.object.String(name="postcode"))
address.addRelated(name="person", foreignTable="Person")

database = web.database.object.Database()
database.addTable(person)
database.addTable(address)
database.init(cursor)

We have now related the two tables using theaddRelated() method of each class instead of using
addMultiple() andaddSingle() .

Note: Because the two Classes use related joins thedatabase.createTables() method actually creates
an intermediate table to store the relationships. The modules hide this table so you don’t need to worry about
it to useweb.database.object . If you are interested the table is named by taking the two tables in al-
phabetical order and joining thier names with an underscore. For example the table in the example above will
create a table names’Adrress Person’ . This name can be customised by deriving a customised class from
web.database.object.Table and overriding the relatedTableName() method of both tables.

Here is an example:

66 Chapter 1. Web Modules

>>> john = database[’Person’].insert(firstName=’John’, surname=’Smith’)
>>> owen = database[’Person’].insert(firstName=’Owen’, surname=’Jones’)
>>>
>>> friendlyPlace = database[’Address’].insert(firstLine=’12 Friendly Place’, postcode=’MK4 1AB’)
>>> crazyGardens = database[’Address’].insert(firstLine=’3a Crazy Gardens’, postcode=’OX1 2ZX’)
>>> greatRoad = database[’Address’].insert(firstLine=’124 Great Road’, postcode=’JG6 3TR’)
>>>
>>> john.relate(friendlyPlace)
>>> owen.relate(greatRoad)
>>> crazyGardens.relate(john)
>>>
>>> print john[’addresses’].keys()
[’MK4 1AB’, ’OX1 2ZX’]
>>> for address in john[’addresses’].values():
... print address[’postcode’]
...
MK4 1AB
OX1 2ZX
>>> print greatRoad[’people’].keys()
[’Owen’]
>>> print owen[’addresses’][’JG6 3TR’][’people’].keys()
[’Owen’]
>>> john[’addresses’][’MK4 1AB’][’firstLine’] = ’The Cottage, 12 Friendly Place’
>>> print database[’Person’][’John’][’addresses’][’MK4 1AB’][’firstLine’]
The Cottage, 12 Friendly Place

The code should be fairly self-explainatory. We are inserting some different people and addresses into the table
and the relating them to each other. Each row from each table can be related to as many other rows from the other
table as you like. Or a row might not be related to another one at all.

It should be noted that you cannot set the values of multiple columns like the’addresses’ column directly.
Instead you should set the values of each object induvidually.

>>> john[’addresses’] = something # XXX Doesn’t work!

You can create fairly complex expressions as is demonstrated by the expression:

database[’Person’][’John’][’addresses’][’MK4 1AB’][’firstLine’]

Here we are selecting all the addresses from the row’John’ from the’Person’ table and then selecting the
first line of the address with postcode’MK4 1AB’ . It is actually possible to create circular references (although
not very useful) as shown below.

>>> john == database[’Person’][’John’] == \
... database[’Person’][’John’][’addresses’][’MK4 1AB’][’people’][’John’] \
... == database[’Person’][’John’][’addresses’][’MK4 1AB’][’people’][’John’] \
... [’addresses’][’MK4 1AB’][’people’][’John’]
True

Just for interest here is how the tables look after running the example. You can see that the AddressPerson table
contains the rowids of the related people and addresses.

1.5. web.database.object — An object relation mapper built on the web.database and
web.form modules

67

Tables in the ’test’ database
+----------------+
| Tables_in_test |
+----------------+
| Address |
| Person |
| Address_Person |
+----------------+

The Person table
+-------+-----------+---------+
| rowid | firstName | surname |
+-------+-----------+---------+
| 1 | John | Smith |
+-------+-----------+---------+
| 2 | Owen | Jones |
+-------+-----------+---------+

The Address table
+-------+------------------------------------+----------+
| rowid | firstLine | postcode |
+-------+------------------------------------+----------+
| 1 | The Cottage, 12 Friendly Place | MK4 1AB |
+-------+------------------------------------+----------+
| 2 | 3a Crazy Gardens | OX1 2ZX |
+-------+------------------------------------+----------+
| 2 | 124 Great Road | JG6 3TR |
+-------+------------------------------------+----------+

The Address_Person table

+--------+-----------+
| people | addresses |
+--------+-----------+
| 1 | 1 |
+--------+-----------+
| 2 | 2 |
+--------+-----------+
| 1 | 3 |
+--------+-----------+

It should be noted that each table can contain as many columns, multiple, related and single joins as you like.

Full Code Listing

Here is a complete code listing so that you can experiment:

#!/usr/bin/env python

import sys; sys.path.append(’../../../’) # show python where the modules are

import web.database, web.database.object
connection = web.database.connect(

adapter="snakesql",
database="database-object-related",
autoCreate = 1,

)
cursor = connection.cursor()

person = web.database.object.Table("Person")

68 Chapter 1. Web Modules

person.addColumn(web.database.object.String(name="firstName", unique=True, required=True, key=True))
person.addColumn(web.database.object.String(name="surname"))
person.addRelated(name="addresses", foreignTable="Address")

address = web.database.object.Table("Address")
address.addColumn(web.database.object.String(name="firstLine"))
address.addColumn(web.database.object.String(name="postcode", unique=True, required=True, key=True))
address.addRelated(name="people", foreignTable="Person")

database = web.database.object.Database()
database.addTable(person)
database.addTable(address)
database.init(cursor)

if not database.tablesExist():
database.createTables()
print "Created Table"

john = database[’Person’].insert(firstName=’John’, surname=’Smith’)
owen = database[’Person’].insert(firstName=’Owen’, surname=’Jones’)

friendlyPlace = database[’Address’].insert(firstLine=’12 Friendly Place’, postcode=’MK4 1AB’)
crazyGardens = database[’Address’].insert(firstLine=’3a Crazy Gardens’, postcode=’OX1 2ZX’)
greatRoad = database[’Address’].insert(firstLine=’124 Great Road’, postcode=’JG6 3TR’)

john.relate(friendlyPlace)
owen.relate(greatRoad)
crazyGardens.relate(john)

print john[’addresses’].keys()
for address in john[’addresses’].values():

print address[’postcode’]

print greatRoad[’people’].keys()
print owen[’addresses’][’JG6 3TR’][’people’].keys()

john[’addresses’][’MK4 1AB’][’firstLine’] = ’The Cottage, 12 Friendly Place’
print database[’Person’][’John’][’addresses’][’MK4 1AB’][’firstLine’]

connection.close() # Close the connection without saving changes

The output is:

Created Table
[’MK4 1AB’, ’OX1 2ZX’]
MK4 1AB
OX1 2ZX
[’Owen’]
[’Owen’]
The Cottage, 12 Friendly Place

You will need to delete the database file ‘object-related.db’ each time you run the cose so that it can be recreated
each time.

1.5.5 Building Queries

You can build complex data structures because each table can contain as many columns, multiple, related and
single joins as you like. This isn’t a lot of use if you cannot then select the information you want. So far you
know how to select data using a series of keys or rowids but the power of SQL is in being able to perform complex
queries on that information. Theweb.database.object module has a facility for doing just that.

1.5. web.database.object — An object relation mapper built on the web.database and
web.form modules

69

For this example we create two tables:

import web.database, web.database.object, datetime

connection = web.database.connect(type="sqlite",database="object-query.db")
cursor = connection.cursor()

person = web.database.object.Table("Person")
person.addColumn(web.database.object.String(name="firstName"))
person.addColumn(web.database.object.String(name="surname", unique=True, required=True, key=True))

queryExample = web.database.object.Table(’QueryExample’)
queryExample.addColumn(web.database.object.Date(name="testDate"))
queryExample.addColumn(web.database.object.Integer(name="testInteger"))
queryExample.addColumn(web.database.object.Integer(name="testNumber"))
queryExample.addColumn(web.database.object.Email(name="email"))

database = web.database.object.Database()
database.addTable(person)
database.addTable(queryExample)
database.init(cursor)

database[’Person’].insert(firstName="John", surname="Smith")
database[’Person’].insert(firstName="Owen", surname="Jones")
database[’QueryExample’].insert(

testDate=datetime.date(2004,7,11),
testInteger = 10,
testNumber = 15,
email = ’james@example.com’

)

To match any rows where thefirstName is ’John’ we make use of thecolumn attribute of each table. The
column attribute is a magic dictionary which allows you to compare columns to objects in natural Python code to
produce a where clause string. It is best explained by an example:

>>> where = database[’Person’].column[’firstName’] == "John"
>>> print where
(Person.firstName = ’John’)
>>> rows = database[’Person’].select(where=where)
>>> print rows
{’Smith’: <web.database.object.Row from Person table, rowid=1, firstName=’John’, surname=’Smith’>}

Here are some more examples.

>>> column = database[’queryExample’].column
>>> column.date == datetime.date(2003,12,12)
"(QueryExample.testDate = ’2003-12-12’)"
>>> column.integer < 5
"(QueryExample.testInteger < 5)"

You can also do more complex queries using AND, OR or NOT. There are two ways of doing this. Both methods
are equivalent so please use whichever one you prefer.

Using Methods AND, ORor NOTare methods of theQueryBuilder class.

70 Chapter 1. Web Modules

>>> where = column.AND(column.email == ’james@jimmyg.org’, column.integer < 5)
"QueryExample.email = ’james@jimmyg.org’) AND (QueryExample.testInteger < 5)"
>>> where = column.NOT(column.email == ’james@jimmyg.org’)
"NOT (QueryExample.email = ’james@jimmyg.org’)"

Using Operators The operators&, | or ˜ are defined to mean AND, OR or NOT respectively. You can use them
to achieve the same result as above like this:

>>> where = (column.email == ’james@jimmyg.org’) & (column.integer < 5)
"QueryExample.email = ’james@jimmyg.org’) AND (QueryExample.testInteger < 5)"
>>> where = ˜(column.email == ’james@jimmyg.org’)
"NOT (QueryExample.email = ’james@jimmyg.org’)"

Note: The bracketsare required for queries using the&, | or ˜ operators because the operators have the
same precedence as other Python operators.

The QueryBuilder is not suitable for all queries. For example it does not currently support the multiple, single or
related joins. If you try to access these columns you will get an error saying the key is not found.

However, all is not lost. Since this is an SQL database after all you can use an SQLcursor.select() method
to get the rowids of the rows you are after and then convert them to objects using therow() method of the
appropriate table object.

This situation may change with later versions of the module.

How It Works

EachQueryBuilder object returns a number ofQuery objects. TheseQuery objects have most of there op-
erators overloaded so that they return correctly encoded strings when compared to values or otherQuery objects.
Unfortunately it is not possible to useand , or or not operators so instead theQuery objects use&, | or ˜
instead.

It is actually possible to write your where clauses as SQL if you are using an SQL driver. Changing the first line of
our from where = query.firstName == "John" to where = ’Person.firstName="John"’
we have:

>>> where = ’Person.firstName="John"’
>>> rows = database[’Person’].select(where=where)
>>> print rows
{’Smith’: <Row firstName="John", surname="Smith">}

and we get the same result. In fact the codecolumn.firstName == ’John’ from the first example actually
returns the SQL encoded string (’Person.firstName="John"’) so the two approaches are the same.

There are two advantages of using theQueryBuilder approach rather than writing your own where clauses as
strings:

1. TheQueryBuilder automatiacally handles any data conversion. This is pretty trivial in the example
above as the string"John" requires on conversion but if you are doing a query on a date it would be a little
more complicated. Using theQueryBuilder takes care of it for you.

2. If a new driver was written for theweb.database.object module it may require where clauses in a
different format from SQL strings. If you write your code using aQueryBuilder you can avoid this
complication.

1.5. web.database.object — An object relation mapper built on the web.database and
web.form modules

71

Supported Operators

TheQueryBuilder object supports the following operators:

The three tables below describe the overloaded operators which you can use withQueryBuilder objects.

Operator Description
< Less than.
<= Less than or equal to.
== Equal to.
<> Not equal to.
> Greater than.
>= Greater than or equal to.

Other Operators

Operator Description
+ Add
- Subtract
* Multiply
/ Divide
abs Absolute value of
** To the power of
% Mod

Logical Operators

Operator Description
& AND
| OR
˜ NOT

Supported Functions

Function Description
AND Equivalent to using the & operator on aQuery object.
OR Equivalent to using the — operator on aQuery object.
NOT Equivalent to using the ˜ operator on aQuery object.

Full Code Listing

Here is a complete code listing so that you can experiment:

#!/usr/bin/env python

import sys; sys.path.append(’../../../’) # show python where the modules are

import web.database, web.database.object
connection = web.database.connect(

adapter="snakesql",
database="database-object-query",
autoCreate = 1,

)
cursor = connection.cursor()

import datetime

72 Chapter 1. Web Modules

person = web.database.object.Table("Person")
person.addColumn(web.database.object.String(name="firstName"))
person.addColumn(web.database.object.String(name="surname", unique=True, required=True, key=True))

queryExample = web.database.object.Table(’QueryExample’)
queryExample.addColumn(web.database.object.Date(name="testDate"))
queryExample.addColumn(web.database.object.Integer(name="testInteger"))
queryExample.addColumn(web.database.object.Integer(name="testNumber"))
queryExample.addColumn(web.database.object.Email(name="email"))

database = web.database.object.Database()
database.addTable(person)
database.addTable(queryExample)
database.init(cursor)

if not database.tablesExist():
database.createTables()
print "Created Table"

database[’Person’].insert(firstName="John", surname="Smith")
database[’Person’].insert(firstName="Owen", surname="Jones")

database[’QueryExample’].insert(
testDate=datetime.date(2004,7,11),
testInteger = 10,
testNumber = 15,
email = ’james@example.com’

)

where = database[’Person’].column[’firstName’] == "John"
print where

rows = database[’Person’].select(where=where)
print rows

column = database[’queryExample’].column

print column[’testDate’] == datetime.date(2003,12,12)
print column[’testInteger’] < 5

print column.AND(column[’email’] == ’james@jimmyg.org’, column[’testInteger’] < 5)
print column.NOT(column[’email’] == ’james@jimmyg.org’)

print (column[’email’] == ’james@jimmyg.org’) & (column[’testInteger’] < 5)
print ˜(column[’email’] == ’james@jimmyg.org’)

connection.close() # Close the connection without saving changes

The output is:

Created Table
(Person.firstName = ’John’)
{’Smith’: <web.database.object.Row from Person table, rowid=1, firstName=’John’, surname=’Smith’>}
(QueryExample.testDate = ’2003-12-12’)
(QueryExample.testInteger < 5)
(QueryExample.email = ’james@jimmyg.org’) AND (QueryExample.testInteger < 5)
NOT (QueryExample.email = ’james@jimmyg.org’)
((QueryExample.email = ’james@jimmyg.org’) AND (QueryExample.testInteger < 5))
(NOT (QueryExample.email = ’james@jimmyg.org’))

You will need to delete the database file ‘object-related.db’ each time you run the cose so that it can be recreated
each time.

1.5. web.database.object — An object relation mapper built on the web.database and
web.form modules

73

1.5.6 Creating Forms/Tables

Lets go back to a simple example:

import web.error; web.error.enable()
import web, web.database, web.database.object, os

connection = web.database.connect(type="sqlite", database="object-form.db")
cursor = connection.cursor()

person = web.database.object.Table("Person")
person.addColumn(web.database.object.String(name="firstName", required=True))
person.addColumn(web.database.object.String(name="surname", required=True))

database = web.database.object.Database()
database.addTable(person)
database.init(cursor)

If we wanted to create a form to display as HTML to add a new person to the table we could use the following
code:

>>> form = database[’Person’].form()
>>> print form.html()
<form id="Person" class="pythonweb" action="" method="post" enctype="multipart/for
m-data">
<input type="hidden" name="table" value="Person">
<input type="hidden" name="mode" value="submitAdd">
<table border="0">
<tr><td><table border="0" cellpadding="3" cellspacing="0">
<tr>

<td valign="top">Firstname </td>
<td> </td>
<td valign="top"><input type="text" name="Person.firstName" size="40" maxlengt

h="255" value=""></td>
<td valign="top"></td>

</tr>
<tr>

<td valign="top">Surname </td>
<td> </td>
<td valign="top"><input type="text" name="Person.surname" size="40" maxlength=

"255" value=""></td>
<td valign="top"></td>

</tr>
</table>
</td></tr>
<tr><td> </td></tr>
<tr><td><input type="submit" value="Submit" name="action"></td></tr>
</table>
</form>

The form object generated byform = database[’Person’].form() is a normalweb.form.Form
object and can be used exactly as anyForm object can. See the documentation for theweb.form module for
more information.

Now we need to get the information the user enters into the database. As with all form objects we follow the
following routine once we have aform object:

74 Chapter 1. Web Modules

form = database[’Person’].form() # Continuing from the previous example.
import web
print web.header() # Print the content-type information
if len(web.cgi) > 1: # Assume form submitted

form.populate(web.cgi)
if form.valid():

entry = database[’Person’].insert(all=form.dict())
print ’<html>%s<p>Go Back</html>’%(

’<h1>Entry Added</h1>’ + form.frozen(),
os.environ[’SCRIPT_NAME’]

)
else:

’<html><h1>Error</h1>%s</html>’%(
"""<p>There were some invalid fields.
Please correct them.</p>""" + form.html()

)
else:

entries = ’’
for row in database[’Person’].values():

entries += ’%s %s
’%(row[’firstName’] ,row[’surname’])
print "<html>%s<h4>Entries</h4><p>%s</p></html>"%(

’<h1>Enter Data</h1>’+form.html(),
entries

)

And that’s about it. We populate the form and check it is valid exactly as we would with any form object. The
dictionary returned byform.dict() can be used in thedatabase[’Person’].insert() function by
specifying it as theall parameter.

A handy point to note is that if you don’t want the user to be able to add information to all of the form fields you
can use theremove() method of the form to remove a field from the form by name before creating the HTML
version of the form. For example:

>>> form = database[’Person’].form()
>>> form.remove(’surname’)
>>> print form.html()
<form id="Person" class="pythonweb" action="" method="post" enctype="multipart/for
m-data">
<table border="0">
<tr><td><table border="0" cellpadding="3" cellspacing="0">
<tr>

<td valign="top">Firstname </td>
<td> </td>
<td valign="top"><input type="text" name="Person.firstName" size="40" maxlengt

h="255" value=""></td>
<td valign="top"></td>

</tr>
</table>
</td></tr>
<tr><td> </td></tr>
<tr><td><input type="submit" value="Submit" name="action"></td></tr>
</table>
</form>

Full Code Listing

Here is a complete code listing so that you can experiment:

1.5. web.database.object — An object relation mapper built on the web.database and
web.form modules

75

#!/usr/bin/env python

show python where the modules are
import sys; sys.path.append(’../’); sys.path.append(’../../../’)

import web.error; web.error.enable()
import web, web.database, web.database.object, os

connection = web.database.connect(
adapter="snakesql",
database="database-object-form",
autoCreate = 1,

)
cursor = connection.cursor()

person = web.database.object.Table("Person")
person.add(column="String", name=’firstName’, required=True)
person.addColumn(web.database.object.String(name="surname"))
person.addColumn(

web.database.object.StringSelect(
name="profession",
options=[None, ’Developer’, ’Web Developer’],
displayNoneAs=’Not Specified’

)
)
person.add(column="Bool", name=’sex’, displayTrueAs=’Male’, displayFalseAs=’Female’)
database = web.database.object.Database()
database.addTable(person)
database.init(cursor)

if not database.tablesExist():
database.createTables()

form = database[’Person’].form()
print web.header() # Print the content-type information
if len(web.cgi) > 1: # Assume form submitted

form.populate(web.cgi)
if form.valid():

entry = database[’Person’].insert(all=form.dict())
print ’<html>%s<p>Go Back</html>’%(

’<h1>Entry Added</h1>’ + form.frozen(),
os.environ[’SCRIPT_NAME’]

)
else:

print """<html><h1>Error</h1><p>There were some invalid fields.
Please correct them.</p>%s</html>"""%(form.html())

else:
entries = ’<table border="0"><tr><td>Firstname</td>’
entries += ’<td>Surname</td><td>Profession</td><td>Sex</td></tr>’
for row in database[’Person’].values():

entries += ’<tr><td>%s</td><td>%s</td><td>%s</td><td>%s</td></tr>’%(
row[’firstName’],
row[’surname’],
row[’profession’],
row[’sex’]

)
entries += ’</table>’
print "<html>%s<h4>Entries</h4><p>%s</p></html>"%(

’<h1>Enter Data</h1>’+form.html(),
entries

)

connection.commit() # Save the changes

76 Chapter 1. Web Modules

connection.close() # Close the connection

You can test this example by starting the test webserver in ‘scripts/webserver.py’ and visiting
http://localhost:8080/doc/src/lib/webserver-web-database-object-form.py on your local machine.

1.5.7 Creating Tables by Defining Classes

As well as defining your table by adding columns to aweb.database.object.Table object you can define
your own class derived from aweb.database.object.Table object instead. Here is the same database
defined above but created using classes instead:

import web, web.database, web.database.object

connection = web.database.connect(type="mysql", database="MyDatabase")
cursor = connection.cursor()

class Person(web.database.object.Table):
def setup(self):

self.addColumn(web.database.object.String(name="firstName"))
self.addColumn(web.database.object.String(name="surname"))
self.addMultiple(name="addresses", foreignTable="Address")

class MyDatabase(web.database.object.Database):
def setup(self):

self.addTable(Person())

myDatabase = MyDatabase()
myDatabase.init(cursor)

Whilst this may look more complicated it is a more object oriented solution and allows you to build complex
table objects with increased functionaility by defining your own objects. For example you could override the
relatedTableName() method of both tables to have your own table name created for multiple join tables.

1.5.8 Other Useful Features

This example below demonstrates some other useful methods.

#!/usr/bin/env python

import sys; sys.path.append(’../../../’) # show python where the modules are

import web.database, web.database.object
connection = web.database.connect(

adapter="snakesql",
database="database-object-others",
autoCreate = 1,

)
cursor = connection.cursor()

person = web.database.object.Table("Person")
person.addColumn(web.database.object.String(name="firstName"))
person.addColumn(web.database.object.String(name="surname"))

database = web.database.object.Database()
database.addTable(person)
database.init(cursor)

if not database.tablesExist():

1.5. web.database.object — An object relation mapper built on the web.database and
web.form modules

77

database.createTables()
print "Created Table"

john = database[’Person’].insert(firstName="John", surname="Smith")
owen = database[’Person’].insert(firstName="Owen", surname="Jones")

print database[’Person’].max(’rowid’)
print database[’Person’].max(’firstName’)
print database[’Person’].min(’surname’)

print database.output()

connection.close() # Close the connection without saving changes

The output is:

Created Table
2
Owen
Jones
+---------------------+
| Database ’Database’ |
+---------------------+
| Person |
+---------------------+

1.5.9 Class Reference

The following sections describe the full Class reference of the three main classes used in the
web.database.object module.

The Database Object

The Database object is used primarily as a container forTable objects. The function reference is shown
below:

classDatabase ([,name=None])
nameis an arbitrary name for the database used by thestr() and repr() funcitons. If not specified
nameis set to the class name for the database.

addTable (table)
Adds the table objecttableto the database

init (cursor)
Initialise the database by associating it with theweb.database cursor specified btcursor. Once the
database is initialised you can’t add or change the table definitions.

createTables ()
Create all the necessary tables

dropTables ([ignoreErrors=False])
Remove all tables defined in the database. IfignoreErrors is True don’t raise an Exception if the
table doesn’t already exist.

tablesExist ()
ReturnTrue if all the tables exist,False otherwise.

table (name)
Return the table object for the table namedname

getitem (name)
Return the table object for the table namedname

78 Chapter 1. Web Modules

keys ()
Return a tuple containing the names of the tables in the database

values ()
Return a tuple containing theweb.database.object.Table objects for each of the tables in
the database

items ()
Return a tuple containing 2-tuples of(key, value) pairs where thekeyis the table name and thevalue
is theweb.database.object.Table object.

dict ([tables=False], [rows=False])
Return all the tables a dictionary indexed by the table names. Iftablesis True then eachtable
object in the dictionary if also made into a dictionary of key:Rowpairs. If rows is True then each
Rowobject of each table is made into a dictionary of column name : value pairs, except for single,
multiple and related joins columns, since this could result in circular references.

has key (key)
ReturnsTrue if the database has a tabletable , False otherwise

output ([width=80])
Return a string representation of the database and tables in the form of a table. Ifwidth is 0 then no
wrapping is done. Otherwise the table is wrapped towidthcharacters. See theweb.util.table()
documentation for more information.

cursor
The underlyingweb.database cursor.

name
The name of the database specified by thenameparameter of the constructor. Used by thestr() and
repr() funcitons.

Table objects can be obtained from aDatabase object by treating theDatabase object as a dictionary of
Table objects referenced by their names.

For example, if a Database object nameddatabase has tables namedPerson and Address
you would access thePerson table with database[’Person’] and the Address table with
database[’Address’] .

>>> database[’Person’]
<web.database.object.Table ’Person’>

TheDatabase object also provides asetup() method which can be used to setup fields if you want to create
your own customDatabase object.

The Table Object

classDatabase ([ignoreCreateAndDrop=False])
If ignoreCreateAndDropis True then the table is not created or dropped when the database methods
createTables() or dropTables() are called.

addColumn (column)
Add aweb.database.object column object to the table.

addMultiple (name, foreignTable)
Add a column named by the stringnameto the table. The column will be used to reference multiple
rows from the table named by the stringforeignTable. The foreign table will have a corresponding
addSingle() entry for this table.

addSingle (name, foreignTable)
Add a column named by the stringnameto the table. The column will contain a reference to a row
in the foreign table named by the stringforeignTable. The foreign table will have a corresponding
addMultiple() entry for this table.

addRelated (name, foreignTable)
Add a column named by the stringnameto the table. The column will contain a reference to any

1.5. web.database.object — An object relation mapper built on the web.database and
web.form modules

79

number of rows in the foreign table named by the stringforeignTable. The foreign table will have a
corresponding addRelated() entry for this table and will contain a reference to any number of rows
from this table.

columns ()
Return a tuple of the column names of the table.

keys ()
Return a tuple containing the keys of the rows in the table.

values ()
Return a tuple containing theweb.database.object.Row objects in the table.

items ()
Return a tuple containing 2-tuples of(str(key), value) pairs where thekey is the
web.database.object.Row key and thevalueis theweb.database.object.Row object.

has key (key)
ReturnsTrue if the table has a row with a keykey, False otherwise

dict ([rows=False])
Return the rows in the table as a dictionary indexed by string representations of their keys. Ifrows is
True then eachRowobject is made into a dictionary of column name : value pairs, except for single,
multiple and related joins columns, since this could result in circular references.

create ()
Create the table.Note: Usually this is done automatically through thecreateTables() method
of theDatabase class.

drop ()
Drop the table.Note: Usually this is done automatically through thedropTables() method of the
Database class.

exists ()
ReturnTrue if the table exists in the database,False otherwise.

rowExists (rowid)
ReturnTrue if the row specified by the integerrowid exists in the table,False otherwise.

columnExists (name)
ReturnTrue if the columnnameexists in the table,False otherwise.

insert ([all=None], [**params])
Insert a new row to the table. Either specify the values as a dictionary as theall parameter with the
column names as keys and the values as the column valuesor specify each column value pair in the
form colName=value, . You must use one of the two methods.Note: all is a reserved word so
there should be no confusion between using the two notations.

delete (rowid)
Delete a row by specifying therowid of the row with therowid parameter.Warning: This method
does not delete corresponding rows in foreign tables. If you delete a row there will still be references to
it in other tables if it contains any colums added byaddMultiple or addSingle() for example.
These should be deleted manually. XXX is this a bug or a useful feature?

row (rowid)
Return theRowwith therowid specified by therowid parameter.

getitem (key)
Return theRow with the key specified by thekeyparameter.Note: Certain objects such as class
objects cannot be used as dictionary keys. All keys are converted to strings using thestr() function
so any object to be used as a key must return a unique value when itsstr () is called. This also
means that

select (where[,order=None][,rowids=False])
Select theRowobjects specified by thewhereparameter in the oreder specified by theorderparameter.
If rowids is True then a list ofrowid s is returned rather than a dictionary ofRowobjects.

form ([action=”][, method=’post’][, stickyData={}][, enctype=’multipart/form-data’][, submit=’Submit’
][, modeDict={’mode’:’mode’, ’table’:’table’, ’submode’:’submode’}][, submode=’add’])

Return an emptyweb.form Form object to allow data to be added to the table.

80 Chapter 1. Web Modules

max(column[, rows=’post’])
Returns the highest value ofcolumnin the current table. Ifrows is True returns a list of rows which
have the maximum value ofcolumn.

min (column[, rows=’post’])
Returns the lowest value ofcolumnin the current table. Ifrows is True returns a list of rows which
have the minimum value ofcolumn.

column
Magic attribute which allows you to build SQL where clauses in natural Python language. For exam-
ple:

>>> print database[’table’].column[’column1’] == 23 \
... && database[’table’].column[’column2’] < datetime.date(2004,12,04)
column1=23 AND column2<’2004-12-24’

See the ”Building Queries” section for more information.

Table rows can be accessed using therow() method or by using the getitem () method as follows.
To return the row with where thekey is surname and you want the row with surname’Smith’ from the
’Person’ table of the database wrapped bydatabase you would do this:

>>> database[’Person’][’Smith’]
<web.database.object.Row from ’Person’ Table, rowid=1, firstName=’John’, surname=’Smith’>

The Row Object

You don’t need to createRowobjects directly. Instead they should be created by using the appropriate methods of
theTable class.

Rowobjects support the standard comparison operators<,<=,>,>=,==,<> as well as thelen() function.

classRow() form ([action=”][, method=’post’][, stickyData={}][, enctype=’multipart/form-data’][, submit=’Submit’
][, modeDict={’mode’:’mode’, ’table’:’table’, ’submode’:’submode’}][, submode=’add’])

Return aweb.form Form object populated with the information from theRow

relate (row)
Relate thisRowto anotherRowobject specified byrow. BothRows must be from tables related with
addRelated() columns and must not alread be related.

unrelate (row)
Unrelate thisRowfrom anotherRowobject specified byrow. BothRows must be from tables related
with addRelated() columns and must already be related.

isRelated (row)
ReturnsTrue if the Rows are already related, otherwise returnsFalse .

update ([all=None],[**params])
Set multiple values of this row in one go. This currently not optimised so it makes an SQL call for
each column set. Set eitherall as a dictionary ofcolumn:values pairs or set**params by using
column=value pairs.

keys ()
Return a tuple containing the column names of the fields.

values ()
Return a tuple containing values of each field for the current row.

items ()
Return a tuple containing 2-tuples of(key, value) pairs where thekey is the column name and the
valueis the value of each field for the current row.

has key (column)
ReturnsTrue if the row has a column namedcolumn, False otherwise

1.5. web.database.object — An object relation mapper built on the web.database and
web.form modules

81

dict ()
Return the row as a dictionary of column name : value pairs, except for single, multiple and related
joins columns, since this could result in circular references.

rowid
The rowid of the row

Each column from theRowcan be accessed through a dictionary-like interface. For example to print the value
of the column named’firstName’ from theRowwith rowid 1 from the ’Person’ table in the database
database you would use:

>>> print database[’Person’][1][’firstName’]
John

1.5.10 Future

This is a list of things currently not included in the module but which may be of use later on:

• Support for functions such as LIKE, BETWEEN, NOW etc.

• Specify different columns for automatic RSS generation

• Build many-to-many support into the query builder

• Deal with ” being interpreted as None

1.6 web.error — Enhanced error handling based on the cgitb
module

Theweb.error module provides enhanced functionality similar to thecgitb module distributed with Python.
If an exception is raised theweb.error module can catch the error and produce a customised display of the
error, the surrounding code and the values of variables in the line which caused the error. It also provides the
ability or log errors to a file in various formats.

Using the module you can also provide your own error handling. The example at the end shows you how to create
a custom error handler to email error reports to a devloper.

See Also:

cgitb Module Documentation
(http://www.python.org/doc/current/lib/module-cgitb.html)

Find out more about thecgitb module on which this module is based.

1.6.1 Basic Usage

The easiest way of catching and handling errors in Python is to use atry:.. except:.. block around
all your code as shown below:

try:
raise Exception(’This error will be caught’)

except:
print "An error occured"

If you want to produce more detailed error reports you can do something like this:

82 Chapter 1. Web Modules

try:
raise Exception(’This error will be caught and nicely displayed’)

except:
import web.error
print web.error.info(output=’traceback’, format=’text’)

This will produce a text format output of the traceback information.

If no parameters are specified in theweb.error.info() function the result returned is a full HTML debug
representation of the error similar to that produced by thecgitb module.

Often a more convenient way to catch errors is by using theweb.error.handle() method. If an error is
raised it will be automatically handled. The default behaviour is to print aContent-type header followed by
HTML information about the error suitable for display in a web browser. This can be done as follows:

import web.error
web.error.handle()

raise Exception(’This error will be caught and nicely displayed for a web browser’)

This will produce a full HTML page giving the debug traceback of the error.

Python allows you to put both lines of code on one line to make things look neater if you use a; so in some of the
following samples the error handling initialising will look like this:

import web.error; web.error.handle()

Agian a full HTML page giving the tracback of the error is displayed together with the HTTP header for display in
a browser. You can specify the information displayed by theweb.error.handle() function by passing any
parameters that can be passed to theweb.error.info() function, but if you do this you should also specify
the handler you wish to use. The example below prints a text representation of the code which caused the error to
a web browser:

import web.error
web.error.handle(

handler = ’browser’,
output = ’code’,
format = ’text’,

)

Finally, you may wish to use a different error handler, for example you may wish to log the error to a file rather
than displaying it. You can specify thehandlerparameter as a string representing the name of the handler you wish
to use. Any extra parameters the handler takes can also be specified in thehandle() function. In this example
filenameis a parameter used by thefile handler andoutputandformatare used by theweb.error.info()
function to create a representation of the error:

1.6. web.error — Enhanced error handling based on the cgitb module 83

import web.error
web.error.handle(

handler = ’file’,
filename = ’test.html’,
output = ’traceback’,
format = ’text’,

)

raise Exception(’This error will be caught appended to the test.html file as a text format traceback’)

This time the error will be logged to the file ‘test.html’ and no output will be printed.

The next sections describe the options for theerror() and info() functions and the various error handlers
you can use with thehandle() function provided in theweb.error.handler module. The final section
describes how you can create custom error handlers for even more advanced error handling.

There is a section in the documentation for theweb.wsgi module describing how error handling could be per-
formed in a Web Server Gateway Interface application.

1.6.2 Using The info() Function

Theweb.error.info() function returns a representation of the error raised according to the options specified.
If no options are specified an HTML debug representation is returned.

The parameters used in theweb.error.info() can also be used in theweb.error.handle() function to
describe how the handled error should be displayed.

Below is the API reference for theweb.error.info() .

web.error.info ([error], [context=5])
Return a string representing the error according to parameters specified.

output=’debug’The output format for the exception. Can be’traceback’ for a traceback,’code’ for a
code listing or’debug’ for code and traceback listing suitable for script debugging. If not specified
info() returns aErrorInformation object.

format=’html’ The default output format. Can currently be’text’ or ’html’ .

errorAn exception tuple as retured bysys.exc info() . If not specifiedsys.exc info() (which
contains the current traceback information) is used.

contextThe default number of lines of code to display in traceback information. The default is5.

1.6.3 Using The handler() Function

If you want more control over the format of the error messages you can use one of the handlers in
web.error.handler .

Theweb.error.handle() function has the following parameters:

handle ([handler], [**params])
handlershould be a string representing the name of a default handler to use or a custom handler function.
The parameters specified byparamsare a combination of parameters used by the handler function chosen
and any of the parametersoutput, formatandcontextused to specify how the error information is displayed.

For example:

84 Chapter 1. Web Modules

web.error.handle(
handler = ’file’,
filename = ’test.html’,
output = ’traceback’,
format = ’text’

)

This would append a text format traceback of the error to the ‘test.html’ file.

The default value forhandler is ’browser’ and the default display options produce a full HTML debug
report so most of the time the following code is sufficient to add at the top of a CGI script:

import web.error; web.error.handle()

In the example below we specifyformatas’text’ handler to ouput a text representation of the error:

import web.error; web.error.handle(handler=’browser’, output=’debug’, format=’text’)
This is line 2
This is line 3
This is line 4
This is line 5
raise Exception(’This error will be caught and nicely displayed’)
This is line 7
This is line 8
This is line 9
This is line 10

This produces the output:

Content-type: text/plain

exceptions.Exception
Python 2.2.3 : C:\WINDOWS\Python22\pythonw.exe
Tue Jan 18 20:43:21 2005

A problem occurred in a Python script. Here is the sequence of
function calls leading up to the error, in the order they occurred.

C:\Work\PythonWeb.org\CVS Branches\Web Modules 0.5\test.py
4 # This is line 4
5 # This is line 5
6 raise Exception(’This error will be caught and nicely displayed’)
7 # This is line 7
8 # This is line 8

Exception undefined
exceptions.Exception: This error will be caught and nicely displayed

args = (’This error will be caught and nicely displayed’,)

The above is a description of an error in a Python program. Here is
the original traceback:

Traceback (most recent call last):
File "test.py", line 6, in ?

raise Exception(’This error will be caught and nicely displayed’)
Exception: This error will be caught and nicely displayed

Note that the handler printedContent-type HTTP header. This is so that the output could be displayed in a
web browser. If this header wasn’t displayed you would see anInternal Server Error 500 message in
the browser.

1.6. web.error — Enhanced error handling based on the cgitb module 85

If you are not writing a web application you might choose to use the’print’ handler instead of the’browser’
handler so that theContent-type HTTP header is not displayed.

If you want to control the number of lines of code displayed in the error output you can set thecontextparameter.
This is the number of lines to be displayed around each line of the traceback. In the example below we set
context=3 to reduce the amount of output:

import web.error; web.error.handle(handler=’print’, output=’debug’, format=’text’, context=3)

The output is:

exceptions.Exception
Python 2.2.3 : C:\WINDOWS\Python22\pythonw.exe
Tue Jan 18 20:45:02 2005

A problem occurred in a Python script. Here is the sequence of
function calls leading up to the error, in the order they occurred.

C:\Work\PythonWeb.org\CVS Branches\Web Modules 0.5\test.py
5 # This is line 5
6 raise Exception(’This error will be caught and nicely displayed’)
7 # This is line 7

Exception undefined
exceptions.Exception: This error will be caught and nicely displayed

args = (’This error will be caught and nicely displayed’,)

The above is a description of an error in a Python program. Here is
the original traceback:

Traceback (most recent call last):
File "test.py", line 6, in ?

raise Exception(’This error will be caught and nicely displayed’)
Exception: This error will be caught and nicely displayed

Note that there are fewer lines of code in the code display of the traceback than before.

If info is not specified in thehandler() function, information can be produced in any of the formats supported
by info() simply by passing thehandler() function the parameters you would normally pass toinfo() and
not specifying theinfo parameter. The exception to this rule it thathandler() does not accept theoutput=’class’
option as this does not produce text output.

There are three built-in handlers each of which handle the error information generated in different ways.

’print’ (web.error.handler.send()) Simply prints the error information to the standard output.

’browser’ (web.error.handler.browser()) Sends the error information to the standard output af-
ter first sending an HTTPContent-type header for display in a web browser. You can over-ride the
default header to be sent by specifyingheader. For exampleheader=’text/plain’ would send a
Content-type: text/plain HTTP header.

’file’ (web.error.handler.file()) Writes the error information to the file specified byfilename.

If no filenameis specified, the error information is written to a file in the format2005-01-18.log . If
appendis specifiedFalse the file is overwritten, the default isTrue meaning that error information is
appended to the file. Ifdir is specified, files are logged to that directory, the default is to log to the script
directory. Warning: It is good practice, but not enforced, to specifydir otherwise it is possible a logfile
will overwrite a file of the same name.

If messageis specified that message is sent to the standard output. Usually you should setmessage
to be something likeweb.header(’text/plain’)+’An error occured and has been

86 Chapter 1. Web Modules

logged.’ . Obviously you would not need to specifyweb.header(’text/plain’) if you are not
outputting the error message to a web browser.

All of the handlers are used in the same way.

1.6.4 Using The error() Function

Alternatively you can create anErrorInformation object to display the error information:

try:
raise Exception(’This error will be caught and nicely displayed’)

except:
import web.error
errorInfo = web.error.error()
print error.textException()

This would aproduce the same output described in the previous example.

The web.error.error() function returns anErrorInformation object which can be used to format
exception tuples in a variety of useful ways. Below is the API reference for theweb.error.error() function
and theInformation objects returned.

web.error.error ([error=sys.exc info()], [context=5])
Return anErrorInformation object representing the error.

errorThe traceback tuple you wish to display information for. If not specified the last exception is used.

contextThe default number of lines of code to display in traceback information. The default is5.

classErrorInformation
Error Information objects have the following attributes:

error
The error tuple specified in theinfo() function orsys.exc info() if no error was specified.

format
The default output format of the methods. Can currently be’text’ or ’html’ .

pythonVersion
A string representing the version of Python being used.

errorType
The Exception raised

errorValue
The error message.

date
A string representing the date and time theInformation object was created.Note: This may not
be the time the error occured.

context
The number of lines of code to display in error information.

Error Information objects have the following methods for displaying error informationNote: Python
2.1 and below do not have thecgitb module and so have slightly different implementations of thehtml()
andtext() methods so the output of those methods may be different to the output generated using Python
2.2 and above.

ouput (output,[format], [error], [context])
outputcan be’traceback’ for a traceback,’code’ for a code listing or’debug’ for code and
traceback listing suitable for script debugging. The method returns the result of calling the respective
method below.

1.6. web.error — Enhanced error handling based on the cgitb module 87

traceback ([format], [error])
Returns the traceback of the error in the format specified byformatwhich can currently be’text’
or ’html’ . If not specifiedformat takes the value offormat . error should be an error tuple as
returned bysys.exc info() . If not specifiederror is used.

code ([format], [error], [context])
Returns relevant lines of code and variables from the traceback in the format specified byformatwhich
can currently be’text’ or ’html’ . If not specifiedformat takes the value offormat . context
is the number of lines of code to display at each stage in the traceback information. If not specified
context is used.error should be an error tuple as returned bysys.exc info() . If not specified
error is used.

debug ([format], [error], [context])
Returns the traceback of the error in the format specified byformattogether with relevant lines of code
and variables.formatcan currently be’text’ or ’html’ . If not specifiedformat takes the value of
format . contextis the number of lines of code to display at each stage in the traceback information.
If not specifiedcontext is used.error should be an error tuple as returned bysys.exc info() .
If not specifiederror is used.

1.6.5 Creating Custom Handlers

If the built-in handlers don’t provide the level of cutomisation you require you can create a custom handler.

Handlers are simply callables which take the info string to output as the first parameter and any parameters passed
to thehandle() function as subsequent parameters.

For example:

>>> def myHandler(info, message):
... print message
>>>
>>> import web.error; web.error.handle(myHandler, message="An error occured")
>>> raise Exception(’This is an error’)
An error occured

This example isn’t too useful as it always displays the same output. To make it more useful

>>> def myHandler(info, message):
... print message
... print info
>>>
>>> import web.error
>>> web.error.handle(
... myHandler,
... format=’text’,
... output=’traceback’,
... message=’An error occured’,
...)
>>> raise Exception(’This is an error’)
An error occured
exceptions.Exception: This is an error

args = (’This is an error’,)

outputis used to obtain the error information from theinfo() function which is then sent as the first parameter
to themyHandler function.messageis also sent to themyHandler function which prints the error message.

This structure allows building very powerful handlers.

88 Chapter 1. Web Modules

1.6.6 Example

Take a look at the example below demonstrating a handler which emails information to a developer:

#!/usr/bin/env python

show python where the web modules are
import sys; sys.path.append(’../’); sys.path.append(’../../../’)

import web.error; web.error.handle()
raise Exception(’This is a test exception’)

Warning: If you run this example please make sure you replace the email addresses with your own email address
in. You may need to change the path of sendmail or use an SMTP server instead. See theweb.mail module
documentation for help with this.

Note: If an exception occurs in your custom error handling function it may be difficult to track down. You can
put your code inside atry except block and make sure some sensible output is returned in the event of an
Exception being raised.

1.7 web.environment — Tools for seting up an environment

Theweb.environment module provides a single function nameddriver() used to obtain an environment
driver to setup or remove an environment.

In the context of a PythonWeb application the environment describes the structures in place in the storage medium
and mainly relates to theweb.auth andweb.session modules.

Environments are best explained by an example. If you are using a database environment it means that you will
be storing session and user information in a series of database tables. Before you can start using these tables they
need to be created. Theweb.environment module provides tools to setup the database tables needed. If you
were using a file environment, you may need to create the necessary directory structure.

Within an environment, applications can share session and user tables and access each other’s information. For
example if you had two applications namedguestbook andnews, you might want a user namedjames to
be able to access both of them without having to sign in to both applications. If theguestbook andnews
applications are both in the same environment this is easy since they both use the same session ID and user
information.

Each environment has a name. In the context of a database environment the environment name is simply a string
which is used to prepend all the environment tables so that multiple environments (with different names) can exist
in the same database. This means that you can run all the PythonWeb environments you want to from the same
database which is handy if your shared web hosting agreement only gives you access to one database. In the
context of a file environment, the environment name might be the name of the directory holding the data files.

1.7.1 Example

In order to use theweb.session andweb.auth modules the environment must be setup correctly. You can
create the necessary environment using theweb.environment module’sdriver() function as shown below:

#!/usr/bin/env python

show python where the modules are
import sys; sys.path.append(’../’); sys.path.append(’../../../’)

Setup a database connection
import web.database
connection = web.database.connect(

adapter="snakesql",
database="environment",

1.7. web.environment — Tools for seting up an environment 89

autoCreate = 1,
)
cursor = connection.cursor()

import web.environment
driver = web.environment.driver(

name=’testEnv’,
storage=’database’,
cursor=cursor,

)
if not driver.completeEnvironment():

driver.removeEnvironment(ignoreErrors=True)
driver.createEnvironment()
print "Environment created"

else:
print "Environment already complete"

connection.commit() # Save changes
connection.close() # Close the connection

If none or only some of the tables are present we drop all the existing tables (ignoring errors produced because
of missing tables) losing any information they contain and recreate all the tables. We also need to commit our
changes to the database so that they are saved usingconnection.commit() .

1.7.2 API Reference

TheEnvironmentDriver object is used to manipulate the environment. It is obtained from thedriver()
method of theweb.environment module.

driver (storage,[name=”], [**params])
Used to return anEnvironmentDriver object.

storageThe storage driver to be used in the environment. Currently can only be’database’ .

nameThe name of the environment (used to prepend database tables ifstorageis ’database’)

**paramsAny other parameters needed by theEnvironmentDriver object. For example ifstorageis
’database’ then cursor should also be specified as a valid cursor to the database in which the
environment exists.

classEnvironmentDriver
EnvironmentDriver objects have the following methods:

completeEnvironment ()
ReturnsTrue if all auth and session tables exist,False otherwise. XXX Does not check the structure
of the tables.

createEnvironment ()
Creates all the auth and session tables, raising an error if any already exist.

removeEnvironment ([ignoreErrors=False])
Removes all the auth and session tables, raising an error if any don’t exist unlessignoreErrorsis True .

1.8 web.form — Construction of persistant forms/wizards for HTML
interfaces

Theweb.form module a series of classes and functions for generating and managing persistant HTML forms.
As well as basic fields such asinput or select fields, the module provides fields for dates, email addresses,
URLs and more. It also supports fields which return Python types, for example the Integer Select field or the Date
field.

90 Chapter 1. Web Modules

Theweb.form module also provides a mechanism for automatically handling invalid data and requesting more
information from the user.

1.8.1 Introduction

Theweb.form module has three modules containg different types of fields.web.form.field.basic pro-
vides the standard HTML fields such asinput boxes orCheckBoxGroup s. web.form.field.typed
provides fields which return typed data such as Dates andweb.form.field.extra provides fields such as
email and URL.

The code below will create anInteger field:

>>> import web.form, web.form.field.basic as field
>>> input = field.Input(name=’box’, default=’Default Text’,
... description=’Input Box:’, size=14, maxlength=25)
>>> print input.html()
<input type="text" name="box" size="14" maxlength="25" value="Default Text">

This on its own doesn’t seem overly useful but when combined with aweb.form.Form it becomes much more
useful. Following on from the previous example:

>>> exampleForm = web.form.Form(name=’form’, action=’forms.py’, method=’get’)
>>> exampleForm.addField(input)
>>> exampleForm.addAction(’Submit’)
>>> print exampleForm.html()
<form name="form" class="lemon" action="forms.py" method="get" enctype="">
<table border="0">
<tr><td><table border="0" cellpadding="3" cellspacing="0">
<tr>

<td valign="top">Input Box: </td>
<td> </td>
<td valign="top"><input type="text" name="input" size="14" maxlength="25" valu

e="Default Text"></td>
<td valign="top"></td>

</tr>
</table>
</td></tr>

</table>
</form>

In this case a properly formatted form is produced with labels for the fields.

Now in order for this to be useful a mechanism is needed for displaying the form data to the user, validating it,
re-displaying it with an error message if it is invalid and then finally accessing the data.

To populate the form with data we use theweb.cgi object which acts like a dictionary of submitted CGI vari-
ables. If the form is submitted then at least one cgi variable will be avaible so iflen(web.cgi)>0 then we
know someone is trying to submit form data.

>>> if len(web.cgi) > 0:
... exampleForm.populate(web.cgi)

The form will now be populated with the information from theweb.cgi object. The values submitted to each
field may not be of the appropriate types so in order to make sure the information is valid we call thevalid()
method of the form to validate each field.

1.8. web.form — Construction of persistant forms/wizards for HTML interfaces 91

Again, following on from the previous example:

>>> if exampleForm.valid():
... print "It validated"
...
>>> else:
... print exampleForm.html()
...

If the information entered into the form is not validexampleForm.html() will return a form with the error
marked on so that the user can change the field and resubmit the form. Once every field in the form is valid then
we can go ahead and access the fields varaibles by their names like this:

>>> exampleForm[’box’]
<Input Class. Name=’box’>
>>> exampleForm[’box’].value
’Default Text’

If a valid value had been submitted thenexampleForm[’box’].value would have returned that value rather
than the default.

1.8.2 Form Objects

classForm([name=’form’][, action=”][, method=’get’][, stickyData=][, enctype=”][, populate=None][,
includeName=None])

Form objects have the following class structure and methods:

valid ()
tries to vaildate each field. If any of them contain invalid values returnsFalse otherwise returns
True

populate (form)
Populates each field from the value ofform. formshould be aweb.cgi object.

addField (field)
Add the field objectfield to the form.

addAction (name)
Add a Submit button namednameto the form. XXX May remove this function in future versions.

field (name)
Returns the field object namedname

getitem (name)
Returns the field object namedname

remove (name)
Remove the field namednamefrom the form

has key (name)
ReturnsTrue if the form has a field namedname, False otherwise

values ()
Return a tuple containing the values of the form fields in the order they were added. The values of the
field can be accessed from thevalue attribute of each item in the tuple.

keys ()
Return a tuple containing the names of the form fields in the order they were added

dict ()
Return a dictionary containing the names and values of the fields askey:value pairs

items ()
Return a tuple containing 2-tuples of(key, value) pairs where thekeyis the field name and thevalue
is the field object.

92 Chapter 1. Web Modules

html ()
Return an HTML representation of the form

hidden ()
Return the form as hidden fields

frozen ([action=None])
Return the form as HTML with the values displayed as text and hidden fields instead of the fields. If
action is specified a Submit button with the value specified byaction is added to the form

templateDict ()
Return the form as a dictionary suitable for use in a template.

The keys include: ’name’ ,’action’ ,’method’ ,’enctype’ ,’fields’ ,’actions’ and
’stickyData’ . ’fields’ is the key to an array dictionarys containg field information with
the keys:’name’ ,’error’ ,’description’ ,’value’ and ’html’ . ’stickyData’ is the
stickyData as hidden fields.

1.8.3 Creating Custom Forms

Rather than creating aweb.form.Form object and adding fields, it is also possible to define a custom form
object. This has the advantage that you can easily override the default behaviour of theweb.form.Form object
so that your form will display information in a different way. More information on customisingweb.form.Form
objects is given later on. The code below creates exactly the same form object as we created in the example above.

>>> class ExampleForm(web.form.Form):
... def setup(self):
... self.addField(
... field.Input(
... name=’box’,
... default=’Default Text’,
... description=’Input Box:’,
... size=14, maxlength=25
...)
...)
... self.addAction(’Submit’)
...
>>> exampleForm = ExampleForm(name=’form’, action=’forms.py’, method=’get’)

1.8.4 Fields

This section provides the full class reference for theweb.form module field classes.

The fields in theweb.form.field.basic are all designed to provide a functional interface to manipulate
standard HTML form fields. Fields in theweb.form.field.typed are used to return a typed object such
as an Integer or a Date. Fields in theweb.form.field.extra provide extra functionality. For example the
Email field checks that the string entered could be a valid email address.

All the fields have the parameters, methods and attributes specified in theField class as well as the parameters,
methods and attributes documented in their own section. TheField should not be used in code. It is simply
designed to be a base class for all the other classes to be derived from.

web.form.field.basic — Various fields for use with web.form

classField (name,[default=”],[description=”][,error=”][,required=False][,requiredError=’Please enter
a value’])

basic.Field is an abstract class from which other classes are derived.

nameThe name of the field.

1.8. web.form — Construction of persistant forms/wizards for HTML interfaces 93

defaultThe default value of the field

descriptionA description of the field for use as part of a form

errorThe error message to initialise the field with

requiredIf True a value must be entered. A string’’ is not a valid value. Ifrequired=True defaultcannot
be ’’ .

requiredErrorA string containing the error to display if no value is entered.

populate (values)
Populates the field from aweb.cgi object.

valuesTheweb.cgi object to use.

valid ([value=None])
Populates the field from aweb.cgi object.

valueThe value to validate. Ifvalue=None then the current value of the field if validated instead.
ReturnsTrue or False .

html ()
Returns the object as an HTML string

frozen ()
Returns a string representation of the field

hidden ()
Returns the field as a hidden field

error ()
Returns the contents of the error string

setError (error)
Set the error of the field toerror

description ()
Returns the contents of the description string

name()
Returns the name of the field

value
The value of the field

classInput (name[,default=”][,description=”][,error=”][,required=False][,requiredError=’Please enter
a value’],[,size=40][,maxlength=None])

size

Size of the filed. The number of characters that are displayed

maxlengthThe maximum number of characters which can be entered into the field.None means there is
no limit.

classPassword (name[,default=”][,description=”][,error=”][,required=False][,requiredError=’Please
enter a value’],[,size=40][,maxlength=None])

size

Size of the filed. The number of characters that are displayed

maxlengthThe maximum number of characters which can be entered into the field.None means there is
no limit.

classHidden (name,[default=”],[description=”][,error=”][,required=False][,requiredError=’Please en-
ter a value’])

Note: Although you can, it makes little sense to set or read an error on a hidden field.

classCheckbox (name[,default=”][,description=”][,error=”][,required=False][,requiredError=’Please
enter a value’])

default

The default can only be’on’ or ’’

classSubmit (name[,default=”][,description=”][,error=”][,required=False][,requiredError=’Please en-
ter a value’])

Creates a submit button. Same methods and attributes asbasic.Field

classReset (name[,default=”][,description=”][,error=”][,required=False][,requiredError=’Please enter
a value’])

Creates a reset button. Same methods and attributes asbasic.Field

94 Chapter 1. Web Modules

classTextArea (name[,default=”][,description=”][,error=”][,required=False][,requiredError=’Please
enter a value’][,cols=None][,rows=None])

cols

The number of columns in the field. (The number of characters that are displayed in each row).None
means not set.

rowsThe number of rows of text on display before the box has to scroll.None means not set.

classFile (name[,default=”],[description=”][,error=”][,required=False][,requiredError=’Please enter a
value’])

For file uploads.

Note: If a web.form.Form object has aweb.form.field.basic.File field, themethodparame-
ter should be set to’POST’ and theenctypeshould be set to’multipart/form-data’ for file uploads
to work.

classSelect (name,options[,default=”][,description=”][,error=”][,required=False
][,requiredError=’Please choose an option’])

options

Should be a list or tuple of[value, label] pairs. Eachvalue or label should be a string.
Eachvalue should be unique.

defaultA string equal to thevalue of the default option.

classRadioGroup (name,options[,default=”][,description=”][,error=”][,required=False
][,requiredError=’Please choose an option’][,align=’horiz’][,cols=4])

options

Should be a list or tuple of[value, label] pairs. Eachvalue or label should be a string.
Eachvalue should be unique.

defaultA string equal to thevalue of the default option.

alignCan be’horiz’ , ’vert’ or ’table’

classMenu(name,options[,default=[]][,description=”][,error=”][,required=False
][,requiredError=’Please choose at least one option’])

options

Should be a list or tuple of[value, label] pairs. Eachvalue or label should be a string.
Eachvalue should be unique.

defaultA list or tuple of strings for all the default values to be selected.

value
The value of the field returned as a List.

classCheckBoxGroup (name,options[,default=[]][,description=”][,error=”][,required=False
][,requiredError=’Please choose at least one option’][,align=’vert’][,cols=4
])

options

Should be a list or tuple of[value, label] pairs. Eachvalue or label should be a string.
Eachvalue should be unique.

defaultA list or tuple of strings for all the default values to be selected.

alignCan be’horiz’ , ’vert’ or ’table’

colsIf align=’table’ , colsshould be an integer specifying the number of columns in the table.

value
The value of the field returned as a List.

web.form.field.typed — Typed fields for use with web.form and web.database.object

This module provides fields to support the following data types:

Type Description
Char A character field taking strings of length 1
String A string field taking strings of up to 255 characters
Text A text field for storing large amounts of text (up to 16k characters)
Integer An integer field taking any integer that is a valid Python integer (butnot long)
Float A float field taking Python float values
Date A date field. Takes values in the form of pythondatetime objects. Only stores days, months and years, any other information is trunkated. Dates from0001-01-01 to 9999-12-31 .
Time A time field. Takes values in the form of pythondatetime objects. Only stores hours, minutes and seconds, any other information is trunkated.
DateTime A datetime field. Takes values in the form of pythondatetime objects. Only stores days, months, years, hours, minutes and seconds, any other information is trunkated.

1.8. web.form — Construction of persistant forms/wizards for HTML interfaces 95

Note: TheseField objects correspond to the fields used by theweb.database module. There is a
reason for this; theColumn objects in theweb.database.object module are each derived from a
web.form.field.typed Field . This means that columns from aweb.database.object.Row are
also valid form fields. This is used in theweb.database.object classes to automatically generate and vali-
date forms which can be used seamlessly and easily submit and edit data in a database.

Each of the data types listed below has three types of field specified:

Free Allows the user to specify any value

Select Allows the user to choose one value from a number of values specified

CheckBoxGroup Allows the user to choose more than one option

The typed field classes have the same interface as their basic equivalents except that:

1. The Select and CheckBoxGroup classes take lists of their respective data types rather thanvalue, label
pairs.

2. The fields return their repsective Python object (or list of objects) when their.value attribute is called.

All the fields can either take their respective data type or the valueNone as possible values for the field. The only
complications are theweb.form.field.typed.String , web.form.field.typed.Text and class-
web.form.field.typed.Char objects.

If someone enters no information into a String field there is a choice of whether to treat this as a null string’’ or
a NULL valueNone. To specify which behaviour you would like theweb.form.field.typed.String
object accepts the parametertreatNullStringAsNonewhich takes a default value ofTrue . The
web.form.field.typed.Char andweb.form.field.typed.Text fields also accept thetreatNull-
StringAsNoneparameter.

Theweb.form.field.typed.Integer field also takes the parametersminandmaxto specify the minimum
and maximum values and the parametersminError andmaxError to specify the errors to display if the values are
outside the specified minimum and maximum.

One more complication is how to displayNone values in theweb.form.field.typed.StringSelect
and classweb.form.field.typed.CharSelect objects. If you choose the string’None’ to display it how do you
distinguishNone from ’None’ ? Any value you choose could be confused with another string. The solution is to
set a string value to dispalyNone that isn’t another value in theoptions. You can set this using thedisplayNoneAs
parameter.None values for the other Select fields are just displayed as’’ .

web.form.field.extra — Extra fields for use with web.form

This module provides two classes:URL and Email . Both these classes behave exactly the same as the
web.form.field.typed.String class except that they only accept as values strings that are URLs or
Emails respectively.

For example:

>>> import web.form.field.extra as field
>>> email = field.Email(name=’emailField’)
>>> print email.html()
<input type="text" name="emailField" value=""> <small>eg. james@example.com</small>
>>> email.value = ’this is not an email address’
>>> email.valid()
0
>>> print email.error()
Please enter a valid email address. eg. james@example.com
>>> email.setError(’’)
>>> email.value = ’james@example.com’
>>> email.valid()
1

96 Chapter 1. Web Modules

1.8.5 Basic Fields Example

As an example showing the internal workings of the the form module.

#!/usr/bin/env python

"Forms example."

import sys, re, os
sys.path.append(’../’)
sys.path.append(’../../’)

import web.error; web.error.handle()
import web, web.form, web.form.field.basic, web.util

class ExampleForm(web.form.Form):

def setup(self):
self.addField(web.form.field.basic.Input(’input’, ’Default Text’, ’Input Box:’, size=14, maxlength=25))
self.addField(web.form.field.basic.Password(’password’, ’Default Text’, ’Password Field:’,size=14, maxlength=25))
self.addField(web.form.field.basic.Hidden(’hiddenfield’, ’Default Text’,’Hidden Field’)) # XXX
self.addField(web.form.field.basic.CheckBox(’checkbox’, ’DefaultValue’, ’Checkbox:’))
self.addField(web.form.field.basic.Button(’button’, ’Button Label’, ’Button:’))
self.addField(web.form.field.basic.TextArea(’textarea’, ’Text Area\n-----\nText’, ’Text Area:’))
self.addField(web.form.field.basic.RadioGroup(’radiogroup’, [(’1’,’one’),(’2’,’two’),(’3’,’three’)] , ’3’ , ’Radio Group:’, align="table", cols=2))
self.addField(web.form.field.basic.Menu(’menu’, [(’1’,’one’),(’2’,’two’),(’3’,’three’)], [’2’,’3’], ’Menu’, size=3, required=False))
self.addField(web.form.field.basic.Select(’select’, [(’1’,’one’),(’2’,’two’),(’3’,’three’)], ’3’, ’Select’, required=True))
self.addField(web.form.field.basic.CheckBoxGroup(’checkboxgroup’, [(’1’,’one’),(’2’,’two’),(’3’,’three’)], [’1’,’2’], ’Check Box Group:’, required=True))
self.addField(web.form.field.basic.Reset(’reset’, ’Reset’, ’Reset Button:’))
self.addField(web.form.field.basic.Submit(’submit’, ’Submit’, ’Submit Button (normally not used):’))

The preffered way of adding submit buttons is as actions so Submit buttons are normally not used.
self.addAction(’Validate This Form’)

def valid(self):
if web.form.Form.valid(self):

validates = True
if self.get(’input’).value == ’Default Text’:

self.get(’input’).setError("ERROR: You must change the text in the input box.")
validates = False

return validates
else:

return False

Print the HTTP Header
print web.header(’text/html’)

Create a form

exampleForm = ExampleForm(’form’, os.environ[’SCRIPT_NAME’], ’get’)

if len(web.cgi) > 0: # Form submitted
Populate form with the values from get.

Prepare form values:
values = {}

for k in web.cgi.keys():
values[k] = [k,str(web.cgi[k])]
if exampleForm.has_key(k):

values[k].append(exampleForm[k].value)
values[k].append(exampleForm[k].error())

1.8. web.form — Construction of persistant forms/wizards for HTML interfaces 97

exampleForm.populate(web.cgi)

for k in web.cgi.keys():
if exampleForm.has_key(k):

values[k].append(exampleForm[k].value)
values[k].append(exampleForm[k].error())

if exampleForm.valid():
for k in web.cgi.keys():

if exampleForm.has_key(k):
values[k].append(exampleForm[k].value)
values[k].append(exampleForm[k].error())

valueText = ’’
for k in exampleForm.keys():

if web.cgi.has_key(k):
valueText += ’%s
’%values[k][0]
valueText += ’<table border="0">’
valueText += ’<tr><td>Create</td><td>%s</td></tr>’%web.encode(repr(values[k][2]))
valueText += ’<tr><td>Error</td><td>%s</td></tr>’%web.encode(repr(values[k][3]))
valueText += ’<tr><td>Populate</td><td>%s</td></tr>’%web.encode(repr(values[k][4]))
valueText += ’<tr><td>Error</td><td>%s</td></tr>’%web.encode(repr(values[k][5]))
valueText += ’<tr><td>Validate</td><td>%s</td></tr>’%web.encode(repr(values[k][6]))
valueText += ’<tr><td>Error</td><td>%s</td></tr>’%web.encode(repr(values[k][7]))
valueText += ’</table>

’

print "<html><head><title>Form Test - Validated</title></head><body>\n<h1>It Validated!</h1>%s\n<hr>\n<h2>Values</h2>%s</body></html>"%(exampleForm.frozen(), valueText)
else:

for k in web.cgi.keys():
if exampleForm.has_key(k):

values[k].append(exampleForm[k].value)
values[k].append(exampleForm[k].error())

valueText = ’’
for k in exampleForm.keys():

if web.cgi.has_key(k):
valueText += ’%s
’%values[k][0]
valueText += ’<table border="0">’
valueText += ’<tr><td>Create</td><td>%s</td></tr>’%web.encode(repr(values[k][2]))
valueText += ’<tr><td>Error</td><td>%s</td></tr>’%web.encode(repr(values[k][3]))
valueText += ’<tr><td>Populate</td><td>%s</td></tr>’%web.encode(repr(values[k][4]))
valueText += ’<tr><td>Error</td><td>%s</td></tr>’%web.encode(repr(values[k][5]))
valueText += ’<tr><td>Validate</td><td>%s</td></tr>’%web.encode(repr(values[k][6]))
valueText += ’<tr><td>Error</td><td>%s</td></tr>’%web.encode(repr(values[k][7]))
valueText += ’</table>

’

print "<html><head><title>Form Test - Errors</title></head><body>\n<h1>Please Check Entries</h1>%s\n<hr>\n<h2>Values</h2>%s</body></html>"%(exampleForm.html(), valueText)
else:

print "<html><head><title>Form Test</title></head><body>\n<h1>Welcome Please Fill In The Form</h1>%s\n<hr></body></html>"%(exampleForm.html())

You can test this example by starting the test webserver in ‘scripts/webserver.py’ and visiting
http://localhost:8080/doc/src/lib/webserver-web-form.py on your local machine.

1.8.6 Typed Fields Example

As an example showing the how to use the typed fields, not the use ofNone values.

#!/usr/bin/env python

"Forms example."

import sys, re, os
sys.path.append(’../’)
sys.path.append(’../../’)
import web.error; web.error.handle(handler=’browser’, output=’debug’, format=’html’)
import web, web.form, web.form.field.basic, web.util

98 Chapter 1. Web Modules

import web.form.field.typed

class ExampleForm(web.form.Form):

def setup(self):
self.addField(web.form.field.basic.Input(’input’, ’Default Text’, ’Input Box:’, size=14, maxlength=25))
self.addField(web.form.field.typed.String(’string’, default=None, treatNullStringAsNone=False))
self.addField(web.form.field.typed.String(’string None’, default=None, treatNullStringAsNone=True))
self.addField(web.form.field.typed.Bool(’bool’, required=True))
self.addField(web.form.field.typed.Bool(’bool None’, default=None))
self.addField(web.form.field.typed.Text(’text’, default=None, treatNullStringAsNone=False))
self.addField(web.form.field.typed.Text(’text None’, default=None, treatNullStringAsNone=True))
self.addField(web.form.field.typed.Integer(’integer’, default=None, required=True))
self.addField(web.form.field.typed.DateTime(’datetime’, default=None, required=True))
self.addField(web.form.field.typed.StringSelect(’stringselect’, options=[None, ’String’], displayNoneAs=’’))
self.addField(web.form.field.typed.FloatSelect(’floatselect’, options=[None, 1]))
self.addField(web.form.field.typed.FloatCheckBoxGroup(’floatcheckboxgroup’, options=[1,5.89]))
The preffered way of adding submit buttons is as actions so Submit buttons are normally not used.
self.addAction(’Validate This Form’)

def valid(self):
if web.form.Form.valid(self):

validates = True
if self.get(’input’).value == ’Default Text’:

self.get(’input’).setError("ERROR: You must change the text in the input box.")
validates = False

return validates
else:

return False

Print the HTTP Header
print web.header(’text/html’)

Create a form
exampleForm = ExampleForm(’form’, ’webserver-web-form-typed.py’, ’get’)

if len(web.cgi) > 0: # Form submitted
Populate form with the values from get.

Prepare form values:
values = {}

for k in web.cgi.keys():
values[k] = [k,str(web.cgi[k])]
if exampleForm.has_key(k):

values[k].append(exampleForm[k].value)
values[k].append(exampleForm[k].error())

exampleForm.populate(web.cgi)

for k in web.cgi.keys():
if exampleForm.has_key(k):

values[k].append(exampleForm[k].value)
values[k].append(exampleForm[k].error())

if exampleForm.valid():
for k in web.cgi.keys():

if exampleForm.has_key(k):
values[k].append(exampleForm[k].value)
values[k].append(exampleForm[k].error())

valueText = ’’
for k in exampleForm.keys():

if web.cgi.has_key(k):
valueText += ’%s
’%values[k][0]

1.8. web.form — Construction of persistant forms/wizards for HTML interfaces 99

valueText += ’<table border="0">’
valueText += ’<tr><td>Create</td><td>%s</td></tr>’%web.encode(repr(values[k][2]))
valueText += ’<tr><td>Error</td><td>%s</td></tr>’%web.encode(repr(values[k][3]))
valueText += ’<tr><td>Populate</td><td>%s</td></tr>’%web.encode(repr(values[k][4]))
valueText += ’<tr><td>Error</td><td>%s</td></tr>’%web.encode(repr(values[k][5]))
valueText += ’<tr><td>Validate</td><td>%s</td></tr>’%web.encode(repr(values[k][6]))
valueText += ’<tr><td>Error</td><td>%s</td></tr>’%web.encode(repr(values[k][7]))
valueText += ’</table>

’

print "<html><head><title>Form Test - Validated</title></head><body>\n<h1>It Validated!</h1>%s\n<hr>\n<h2>Values</h2>%s</body></html>"%(exampleForm.frozen(), valueText)
else:

for k in web.cgi.keys():
if exampleForm.has_key(k):

values[k].append(exampleForm[k].value)
values[k].append(exampleForm[k].error())

valueText = ’’
for k in exampleForm.keys():

if web.cgi.has_key(k):
valueText += ’%s
’%values[k][0]
valueText += ’<table border="0">’
valueText += ’<tr><td>Create</td><td>%s</td></tr>’%web.encode(repr(values[k][2]))
valueText += ’<tr><td>Error</td><td>%s</td></tr>’%web.encode(repr(values[k][3]))
valueText += ’<tr><td>Populate</td><td>%s</td></tr>’%web.encode(repr(values[k][4]))
valueText += ’<tr><td>Error</td><td>%s</td></tr>’%web.encode(repr(values[k][5]))
valueText += ’<tr><td>Validate</td><td>%s</td></tr>’%web.encode(repr(values[k][6]))
valueText += ’<tr><td>Error</td><td>%s</td></tr>’%web.encode(repr(values[k][7]))
valueText += ’</table>

’

print "<html><head><title>Form Test - Errors</title></head><body>\n<h1>Please Check Entries</h1>%s\n<hr>\n<h2>Values</h2>%s</body></html>"%(exampleForm.html(), valueText)
else:

print "<html><head><title>Form Test</title></head><body>\n<h1>Welcome Please Fill In The Form</h1>%s\n<hr></body></html>"%(exampleForm.html())

You can test this example by starting the test webserver in ‘scripts/webserver.py’ and visiting
http://localhost:8080/doc/src/lib/webserver-web-form-typed.py on your local machine.

1.9 web.image — Create and manipulate graphics including JPG,
PNG, PDF, PS using PIL

Theweb.image currently contains one sub package for creating simple graphs from data.

1.9.1 web.image.graph — Create graphs

html2tuple (htmlColorCode)
Returns a colour tuple of(R, G, B) in hex from an HTML colour code such as#ffffff . The return
value from this function can be used to specify colours in thegraph module.

htmlColorCodeThe html colour code to convert.

Theweb.image.graph module is used to create PNG or similar graphs for use on web pages.

Currently the module only works with positive values for the axes and requires the presence of the ‘Arial.ttf’ font
by default. This modules should be considered an early implementation. You should ensure the values you choose
produce a nice looking graph because there is very little error checking and the values you choose may not result
in the graph displaying correctly.

Here as an example showing the useage of the three main classes:

#!/usr/bin/env python

import sys; sys.path.append(’../../../’) # show python where the modules are
import web.image.graph

100 Chapter 1. Web Modules

graph = web.image.graph.ScatterGraph(
xAxis={’max’:200, ’unit’:20, ’label’:’Value 1 /cmˆ2’},
yAxis={’max’:200, ’unit’:20, ’label’:’Value 2 /cmˆ2’},
points=[(0,0),(13,68),(200,200)],
size=(500, 300),
bgColor=(240,240,240),
title=’Test Graph’

)
graph.save(’scatter.ps’)

graph = web.image.graph.BarGraph(
xAxis={’max’:200, ’unit’:20, ’label’:’Value 1 /cmˆ2’},
yAxis={’max’:200, ’unit’:20, ’label’:’Value 2 /cmˆ2’},
points=[10,20,40,50,200,89, 30, 60, 70, 60],
size=(500, 300),
bgColor=(240,240,240),
title=’Test Graph’

)
graph.save(’bar.png’)

graph = web.image.graph.PieChart(
points={

’food’:10,
’numbers’:20,
’numbers2’:30,

},
size=(500, 300),
bgColor=(240,240,240),
title=’Test Graph’

)
graph.save(’pie.jpg’)

graph = web.image.graph.BarGraph(
xAxis={’max’:200, ’unit’:20, ’label’:’Value 1 /cmˆ2’},
yAxis={’max’:200, ’unit’:20, ’label’:’Value 2 /cmˆ2’},
points=[10,20,40,50,200,89, 30, 60, 70, 60],
size=(500, 300),
bgColor=web.image.html2tuple(’#F0F0F0’),
title=’Test Graph’

)
fp = open(’string.pdf’,’wb’)
fp.write(graph.toString(’pdf’))
fp.close()

Note: The format of the image saved depends on the extension used. Currently supported are’.png’ , ’.jpg’ ,
’.ps’ . JPEG is a lossy compression method and so the graphics produced as JPEGs may not be as good quality
as the others. The receommended format to use is’.png’ . ust save your files with a.png extension to have
PNG output.

It is useful to be able to produce graphs in a script and then return them. The example below generates
a graph. It can be used in an HTML tage like this<img src="webserver-web-image-graph.py"
alt="Graph" /> .

#!/usr/bin/env python

"""Graph Generation Example.
"""

show python where the web modules are
import sys, os
sys.path.append(’../’)
sys.path.append(’../../../’)

1.9. web.image — Create and manipulate graphics including JPG, PNG, PDF, PS using PIL 101

import web.error; web.error.handle()
import web.image, web.image.graph

graph = web.image.graph.BarGraph(
xAxis={’max’:10, ’unit’:1, ’label’:’Days Since Send’},
yAxis={’max’:10, ’unit’:1, ’label’:’Number of Page Views’},
points=[1,5,7,8,4,3,6,8,0,1],
size=(500, 300),
bgColor=web.image.html2tuple(’#ffffff’),
barColor=web.image.html2tuple(’#000080’),
title=’Page View Rate For Newsletter’,

)
print web.header(’image/png’), graph.toString(’png’)

You can test this example by starting the test webserver in ‘scripts/webserver.py’ and visiting
http://localhost:8080/doc/src/lib/webserver-web-image-graph.py on your local machine. You will need the
Arial.ttf font somewhere on your system where Python can find it.

1.10 web.mail — Simple function to send email using email

The mail module provides a simple functionsend() which can be used to send emails as shown in the example
below:

import web.mail
web.mail.send(

msg = "Hello James!",
to = ’james@example.com’,
replyName = ’James Gardner’,
replyEmail = ’james@example.com’,
subject = ’Test Email’,
sendmail = ’usr/bin/sendmail’,
method = ’sendmail’

)

To send the same email via SMTP instead of using ‘Sendmail’ you would use:

import web.mail
web.mail.send(

msg = "Hello James!",
to = ’james@example.com’,
replyName = ’James Gardner’,
replyEmail = ’james@example.com’,
subject = ’Test Email’,
smtp = ’smtp.ntlworld.com’,
method = ’smtp’

)

If you get an error likesocket.error: (10060, ’Operation timed out’) it is likely that the
SMTP address you specified either doesn’t exist or will not give you access.

Function Definition:

mail (msg, to,[subject=”], [method], [smtp], [sendmail], [blind], [reply], [replyName], [replyEmail],
[type])

msg

Text of the message

toA list of recipient addresses in the form: addr@addr.com separated by commas

subjectEmail subject line

102 Chapter 1. Web Modules

methodDescribes which method to use to send the email. Can be’smtp’ or ’sendmail’ . Only needs to
be specified if bothsmtp andsendmail are specified otherwise the method that is defined is used.

smtpSMTP server address

sendmailSendmail path

blindTrue if recipients are to be blocked from seeing who else the email was sent to.

replyNameThe name of the person sending the email.

replyEmailThe address of the person sending the email.

replyThe name and address of the person sending the email in the form:"sender name
<addr@example.com>" . Should only be specified ifreplyNameand replyEmailare not speci-
fied.
The module also provides a methodbuildReply() which can be used to put the name and email
address into the format required for thereplyparameter of thesend() method:

>>> import web.mail
>>> web.mail.buildReply(’James Gardner, ’james@example.com’)
James Gardner <james@example.com>

typeThe second part of the content-type, eg’plain’ for a plain text email,’html’ for an HTML email.

1.10.1 Example

Below is an example demonstrating some of the features which you can use to test the module:

#!/usr/bin/env python

"Test program to send mail to recipients."
import sys; sys.path.append(’../../../’) # show python where the modules are

import web.mail
testAddr = raw_input(’Email address 1 to recieve tests (will receive 6 emails): ’)
testAddr2 = raw_input(’Email address 2 to recieve tests (will receive 2 emails): ’)
if raw_input(’Run the 6 SMTP tests: [y/n] ’) == ’y’:

smtp = raw_input(’SMTP server address: ’)
print "Running SMTP Test...."
counter = 1
for blind in [True, False]:

for to in [testAddr, [testAddr], [testAddr, testAddr2]]:
web.mail.send(

msg="Hello User!\n\nBlind: " + str(blind),
to=to,
reply=web.mail.buildReply(’web.mail Test’,testAddr),
subject="SMTP Test "+ str(counter),
smtp=smtp,
blind=blind,
method=’smtp’

)
print "Sent message %s."%counter
counter += 1

print "Done... check your mail!\n"

if raw_input(’Run the 6 sendmail tests: [y/n] ’) == ’y’:
sendmail = raw_input("Sendmail Path (usually /usr/lib/sendmail): ")
print "Running Sendmail Test...."
counter = 1
for blind in [True, False]:

for to in [testAddr, [testAddr], [testAddr, testAddr2]]:
web.mail.send(

msg="Hello User!\n\nBlind: " + str(blind),

1.10. web.mail — Simple function to send email using email 103

to=to,
reply=web.mail.buildReply(’web.mail Test’,testAddr),
subject="Sendmail Test "+ str(counter),
sendmail=sendmail,
blind=blind,
method=’sendmail’

)
print "Sent message %s."%counter
counter += 1

print "Done... check your mail!"

See Also:

email Module Documentation
(http://www.python.org/doc/current/lib/module-email.html)

Theemail module distributed with Python has a much broader API for constructing emails and should be
consulted if you plan to anything complicated such as emailing attachements.

1.11 web.session — Persistent storage of session and automatic
cookie handling

The session module is designed to provide the ability to manage sessions to allow data to persist between HTTP
requests. It is not designed to any authorisation features theweb.auth is for that purpose.

1.11.1 Background Information

Note: This section is meant as a guide for beginners and can be safely skipped if you already understand the
principles of session handling in a multi-application environment.

The HTTP Protocol is Stateless

When discussing sessions the comment ”The HTTP protocol is a stateless protocol, and the Internet is a stateless
development environment” is often used. This simply means that the HyperText Transfer Protocol that is the
backbone of the Web is unable to retain a memory of the identity of each client that connects to a Web site
and therefore treats each request for a Web page as a unique and independent connection, with no relationship
whatsoever to the connections that preceded it.

For viewing statically generated pages the stateless nature of the HTTP protocol is not usually a problem because
the page you view will be the same no matter what previous operations you had performed. However for appli-
cations such as shopping carts which accumulate information as you shop it is extremely important to know what
has happened previously, for example what you have in your basket. What is needed for these applications is a
way to ”maintain state” allowing connections to be tracked so that the application can respond to a request based
on what has previously taken place.

Session IDs

There are two main ways in which applications can recognise a user, both of which involve identifying the con-
nection using a short string known as a session ID.

In the first method every URL on a web page if modified with the session ID on the end so that whenever a user
clicks on a link the application is aware of which user is requesting a page. One drawback of this approach is that
the session ID can easily be read as it will appear in the address bar of your browser so that a malicious onlooker
could read the session ID and type the URL into another computer. The application would think that both users
were the same person because both would be using the same session ID.

The second method involves cookies. A cookie is a simple text file stored by your browser which contains
key:value pairs of text. When you request a web page, if your browser has a cookie registered for that domain

104 Chapter 1. Web Modules

it sends the information to the web server before retrieving the page. The web browser can then react to the
information in the cookie before returning the page. If a session ID is stored in a cookie then the application can
read the session ID and therefore keep track of your connection history. Using cookies in this way is more secure
that appending a session ID to a URL because only your web browser knows the cookie information and it cannot
be read from your address bar.

Information Storage

The next step is to use a session ID to store information. One option is to put information into hidden fields in
forms and append the information to URLs. This becomes difficult for large amounts of information. A much
better way is to store the information in a server based on which session ID is accessing the website which is what
session handling modules help with.

Multiple Applications

In a real world situation there might be many different applications storing information in a session store. If
they weren’t all carefully planned it would be easy for one application to over-write another’s information. One
solution might be to setup different session stores for each application but this would require tracking multiple
session IDs. A better approach is for the session application to provide a session store to each application but
handle the creation and expiry of the sessions collectively. This is exactly what theweb.session does.

The HTTP Protocol and Cookie Handling

One issue which can cause problems with applications is the way session modules send cookies. When writing
a normal CGI application which simply prints information to the client’s web browser you must send the HTTP
header information to the web browser before the main body of the web page. Once the browser receives two
carriage return characters\n\n it knows that the information that follows is a web page and not more HTTP
headers. This is why you always printContent-type: text/html\n\n before printing<html> etc .

The session handling module also prints HTTP headers to set cookie information and so it is important that the
session handling code appears before you send the\n\n characters to your browser otherwise the page may not
display correctly. This is often hard to spot in application environments like modpython or the WSGI where
header information is separated from page content. If you have problems with the session code because pages are
not displaying correctly check the headers are being sent correctly.

Of course theweb.session module allows you to disable this automatic cookie header printing and handle the
cookie headers in the way your application wants. This is described in the sectionCustom Cookie Handling
later on in the documentation.

1.11.2 Session Module Overview

Theweb.session module provides three different objects to help users manage sessions. These are:

Driver These provide the interface to the storage medium for theManager andStore objects. For example
theDatabaseSessionDriver object is used to create a session store in SQL databases.

Manager These objects are used to handle creation, expiry, loading, validity checks and cleanup of sessions, the
handling of cookies and the creation ofStore objects.

Store These are the objects used to set and retrieve the values being stored for the particular application.

To begin using the session store for your application you must perform the following steps:

1. Create aDriver

2. Ensure an environment exists for theDriver chosen

1.11. web.session — Persistent storage of session and automatic cookie handling 105

3. Create aManager object and load an existing session or create a new session

4. Obtain an applicationStore object

The web.session module providesweb.session.driver() and web.session.manager() func-
tions which you can use to more easily create the correctDriver object andManager objects respectively.

If you are feeling extremely lazy you can simply use theweb.session.start() function to handle everything
for you and return aStore object for your application. Alternatively you can use theweb.wsgi.session
module to handle everything for you if you are using a WSGI application.

If you simply want to get started using the module quickly there is an example later on in the documentation
demonstrating some important features and a full API reference.

1.11.3 Drivers

Theweb.session module is designed so that the data can be stored in lots of different ways through the use
of different drivers. Currently only a database storage driver exists which allows session information to be stored
in any relational database supported by theweb.database module. Theweb.database module includes
SnakeSQL, a pure Python database which works like a library, so you can use theweb.session module even
if you do not have access to another relational database engine.

To use theManager andStore objects we need to obtain a validDriver object. This is done as follows:

import web, web.database, web.session

connection = web.database.connect(’mysql’, database=’test’)
cursor = connection.cursor()

driver = web.session.driver(’database’, environment=’testEnv’, cursor=cursor)

In this example we are using a database to store the session information so we setup a database cursor
namedcursor as described in the documentation for theweb.database module and use it to pass to the
web.session.driver() method.

The environmentparameter is the name of the environment to be used (see the next section for information on
environments).

1.11.4 The Environment

Environments are described in the documentation for theweb.environment module but are effectively groups
of applications which share users and sessions. Specifically the name specified inenvironmentparameter of the
web.session.driver() function is the name prepended to all database tables using that environment so that
multiple environments can be used in the same database (useful if you are using a shared web host and only have
access to one database). It is also the name used to identify the session ID in any cookies theweb.session
module uses.

In order to use theweb.session module the environment must be setup correctly. In the case of database
drivers this simply means the relevant session tables must exist. If you intend to use theweb.auth module
you can setup the environments for theweb.auth and web.session modules at the same time using the
web.environment module. If you just want to setup a session environment you can so do through theDriver
object.

OurDriver object from the previous section is nameddriver and we have already created aweb.database
cursor namedcursor . Have a look at this example:

106 Chapter 1. Web Modules

if not driver.completeSessionEnvironment():
driver.removeSessionEnvironment(ignoreErrors=True)
errors = driver.createSessionEnvironment()
if errors:

raise Exception(’The environment was not sucessfully created’)
connection.commit()

If none or only some of the tables are present we drop all the existing tables (ignoring errors produced because of
missing tables) losing any information they contain and recreate all the tables.

Note: We need to check to see if any errors occured since they are not automatically raised.

We also need to commit our changes to the database so that they are saved usingconnection.commit() .

1.11.5 Obtaining a Session

Once the environment is set up and we have obtained aDriver object nameddriver we need to create a
Manager object. We do this as follows:

manager = web.session.manager(driver=driver, expire=100)

Theweb.session.manager() function also takes a range of parameters such asexpireto set the length of
time in seconds the session is valid for orcookieto set the cookie options. The full list of options is listed in the
API reference section but the default values are usually adequate. If you have not already created a driver it is
possible to specify thedriver() method’s parameters in themanager() method and a driver will be created
for you.

If we are using cookies to store session IDs we use the codeManager object to read the session ID of the current
user from the cookie using theManager object’s session.cookieSessionID() method otherwise we
obtain the session ID in whichever way is appropriate for our application.

sessionID = manager.cookieSessionID()

Once a session ID is obtained we can load the session. TheManager object’sload() method will attempt to
load a session from a session ID. IfsessionIDis not specified it will be obtained from a cookie. If the session is
not valid or does not exist the method returnsFalse and sets the error to theManager object’serror attribute.

If the session does not exist or has expired we need to create a new session using
create() . This will also automatically send cookie headers to set the session ID unless
session.create(sendCookieHeaders=False) is used, in which case you can still print the
headers manually usingsendCookieHeaders() .

if not manager.load(sessionID):
newSessionID = manager.create(sendCookieHeaders=False)
manager.sendCookieHeaders()

1.11.6 Multiple Applications and Stores

Once the session is successfully loaded we can create aStore object.

Theweb.session module supports using multiple applications within an environment. Each application has its
own session store and can only access values in its own store to avoid the risk of over-writing another application’s
data. This has the benefit of allowing applications to share the same session ID and cookie.

Application names can be a string made up of the charactersa-z , A-Z , 0-9 and - . . The application name
must be between 1 and 255 characters in length. The application names do not have to be the same as application

1.11. web.session — Persistent storage of session and automatic cookie handling 107

names used by theweb.auth module, although these are the most appropriate choices.

It is important you choose a name for your application which is unique in the environment you are using. For
example if you are also using theweb.auth module you should not use the application name’auth’ since the
web.auth module used the application name’auth’ to store its values.

To access a store using thestore() method of theManager object you must specify an application name, for
example:

store = manager.store(’testApp’)

1.11.7 Using Stores

We can now use ourstore variable to set and retrieve values from ourtestApp application’s session store.
Below is a demonstration of the functional interface:

store = session.store(’testApp’)
>>> store.set(key=’first’,value=’This is the fist key to be set!’)
>>> print store.get(key=’first’)
This is the fist key to be set!
>>> print store.keys()
[’first’]
>>> store.delete(key=’first’)
>>> store.has_key(key=’first’)
0

Alternatively we can treat thestore object as a dictionary:

>>> store[’first’] = ’This is the fist key to be set!’
>>> print store[’first’]
This is the fist key to be set!
>>> print store.keys()
[’first’]
>>> del store[’first’]
>>> store.has_key(’first’)
0

Both versions behave in exactly the same way and any Python value that can be pickled by thepickle module
can be set and retrieved from the store so you can store strings, numbers and even classes and all the information
will be available for each request until you remove it or the session expires.

One other useful method of theStore object is theempty() method. This is used to remove all information
from an application’s session store. This is a better way of removing information than using theManager ’s
destroy() method sincedestroy() will also remove all the information from other application’s stores
which might cause those applications to crash if the store is currently being accessed.

1.11.8 Using the session.start() function

If you are using cookies (which is the recommended way of using theweb.session module) you may prefer
to use theweb.session.start() method to handle the loading or creation of the session automatically and
return a store for the application specified.Note: This will print the cookie headers straight away so this method
will not work with WSGI applications or other non CGI environments. If you are unsure it is better to use the
longer method.

Below is an example which uses thestart() method:

108 Chapter 1. Web Modules

#!/usr/bin/env python

show python where the modules are
import sys; sys.path.append(’../’); sys.path.append(’../../../’)
import web.error; web.error.enable()
import os, time
import web.database

Setup a database connection
connection = web.database.connect(

adapter="snakesql",
database="webserver-session-simple",
autoCreate = 1,

)
cursor = connection.cursor()

Create a session driver and make sure the database tables exist
import web.session

store = web.session.start(
app=’test’,
environmentName=’testEnv’,
environmentType=’database’,
expire=10,
setupSessionEnvironment=1,
cursor = cursor,

)
manager = store.manager

def printPage(title, url, link, url2, link2, data):
print """
<html>
<h1>%s</h1>
<p>%s</p>
<p>%s</p>
<p>%s</p>
</html>"""%(title, url, link, url2, link2, data)

Write a simple application
if not manager.created:

if web.cgi.has_key(’destroy’) and web.cgi[’destroy’].value == ’True’:
manager.destroy(ignoreWarning=True, sendCookieHeaders=False)
manager.sendCookieHeaders()
print web.header(’text/html’)
printPage(

’Session Destroyed’,
os.environ[’SCRIPT_NAME’],
’Start Again’, ’’,’’,’’

)
else:

print web.header(’text/html’)
manager.setExpire(manager.expireTime+5)
data = []
data.append(’SessionID: ’ +manager.sessionID)
data.append(’Store Keys: ’+str(store.keys()))
data.append(’Store App: ’+store.app)
data.append(’Variable1: ’+str(store[’Variable1’]))
data.append(’ExpireTime: ’+str(manager.expireTime))
printPage(

’Welcome back’,
os.environ[’SCRIPT_NAME’],
’Visit Again’,
os.environ[’SCRIPT_NAME’]+’?destroy=True’,

1.11. web.session — Persistent storage of session and automatic cookie handling 109

’Destroy Session’,
’<p>Every time you visit this page the expiry \
time increases 5 seconds</p>’+’</p><p>’.join(data)

)
else:

print web.header(’text/html’)
store[’Variable1’] = ’Python Rules!’
printPage(

’New Session Started’,
os.environ[’SCRIPT_NAME’],
’Visit Again’, ’’, ’’,
"Set variable1 to ’Python Rules!’"

)

connection.commit() # Save changes
connection.close() # Close the database connection

You can test this example by running the webserver ‘scripts/webserver.py’ and visiting
http://localhost:8080/doc/src/lib/webserver-web-session-simple.py

1.11.9 Managing Sessions

The following sections describe more about theManager object and how it can be used to manage sessions.

Checking Session Existence or Validity

If for any reason you have an application which has run for a long time, it is possible that the session has expired
since the session was originally created or loaded.

To check if a session is still valid usemanager.valid() . Thevalid() method returnsTrue if the session
is valid,False otherwise and raises aSessionError if the session no longer exists.

It is also conceivably possible that the session has been cleaned up and no longer exists. To check if a session
exists usemanager.exists() . Theexists() method returnsTrue if the session exists,False otherwise
but makes no comment on whether or not it is still valid or has expired.

Destroying Sessions

Once a session has expired the data cannot be accessed by the session module. If a user tries to access an expired
session, the session is destroyed immediately.

You can also manually destroy the session using thedestroy() method. However it is highly recommended
that you do not destroy sessions in this way as other applications may be using the session and my crash if during
the course of program execution the session information is removed. Instead you can use theempty() method
of theStore instance to remove all store information for your application whilst leaving the session and other
application’s information safe:

store.empty()

If you do wish to destroy a session and understand the risks you can use:

manager.destroy(ignoreWarning=True)

failing to specifyignoreWarningasTrue will result in aSessionWarning being raised to inform you of the
potential dangers.

110 Chapter 1. Web Modules

Cleaning Up Expired Sessions

Every time a session is loaded or created there is a certain probability (specified by thecleanupProbabiltyparam-
eter of theweb.session.manager() function) that the session module will look through all sessions to see
which ones have expired, removing session information and expired sessions as necessary. This means sessions
are not necessarily get destroyed when they expire.

Setting the cleanup parameter too high means unnecessary work is done checking expired session more than is
needed. Too low and data may persist for a long time meaning that it takes a long time to cleanup the sessions
once the cleanup process is finally begun.

System administrators can manually cleanup sessions using theManager instance’scleanup() method. Using
the method without parameters removes all expired sessions. The method also acceptsminandmaxto specify the
range of expiry times to cleanup. You can also cleanup sessions which have not yet expired but this is dangerous
for the same reasons destroying current sessions is and will raise aSessionWarning . To ignore the warning
set the parameterignoreWarningto True .

Changing the Expire Time of a Session

You can change the expire time of a session usingmanager.setExpire() . The method takesexpireTime
which is the time you want the session to expire in seconds since the epoch (00:00:00 UTC, January 1, 1970) This
is the format returned bytime.time() . expireTimeis not the extra number of seconds to allow the session to
exist for.

1.11.10 Custom Cookie Handling

To understand how cookies work you may want to first readThe HTTP Protocol and Cookie
Handling sub section of theBackground Information section of this documentation.

If you don’t want to have headers sent automatically when using thecreate() and destroy() methods
you can set thesendCookieHeadersparameter toFalse . In this case the header is instead appended to the
response headers attribute in the form of a tuple(type, info) where type is the header type eg
Set-Cookie and info is the header information.

To send the headers you can usesendCookieHeaders() to send all the headers. Once the headers are sent
they are appended to theresponse headers attribute for debugging purposes.

Alternatively you can retrieve the last header and turn it back into a usual HTTP header using this code:

cookieHeader = "%s: %s"%manager.response_headers[-1]

If you want to build your own cookie headers you can usesetCookieString(maxAge) and
deleteCookieString() which return HTTP headers as strings suitable for printing directly.

Finally, cookies are read from theHTTP COOKIEenvironmental variable. If you wish to provide your own
environment dictionary instead of the default (if for example you are using a WSGI application) you can read a
cookie like this:

sessionID = manager.cookieSessionID(environ=environ)

See the API documentation for more information.

1.11.11 Web Server Gateway Interface Middleware

A much more modular way of using theweb.session module functions and classes is to use them as Web
Server Gateway Interface Middleware. This is described in theweb.wsgi.session module documentation

1.11. web.session — Persistent storage of session and automatic cookie handling 111

which also includes an example.

1.11.12 Implementing a new Driver

To implement a new driver you need to create a new module in ‘web/session/drivers/’ with the name of the driver
as the file name and ‘.py’ as the extension.

The file should define two classes named in a similar way to the database driver classes, one of which implements
the checking, creation and removal if the driver environment and the other implements theweb.session module
API and inherits from the first class.

The ‘web/session/drivers/database.py’ can be used as an example. If you implement all the methods in the same
manner as the database driver and each method returns variables of the same type in the same order and raises the
same extensions you will have a valid driver.

Please forward any such drivers to the developers who may wish to include your driver if it is of a sufficiently high
standard and does not require any API changes to any of the other web modules.

1.11.13 Example

Below is an example demonstrating the full way to use the module. If you do not need this level of control over the
web.session module you can direcly use theweb.session.start() method. An example of the same
code written in this simpler way was shown earlier in the documentation.

Here is a full example showing the creation of all the necessary objects and giving you full control over the session:

#!/usr/bin/env python

show python where the modules are
import sys; sys.path.append(’../’); sys.path.append(’../../../’)
import web.error; web.error.enable()
import os, time
import web.database

Setup a database connection
connection = web.database.connect(

adapter="snakesql",
database="webserver-session",
autoCreate = 1,

)
cursor = connection.cursor()

Create a session driver and make sure the database tables exist
import web.session
driver = web.session.driver(’database’, environment=’testEnv’, cursor=cursor)
if not driver.completeSessionEnvironment():

driver.removeSessionEnvironment(ignoreErrors=True)
driver.createSessionEnvironment()

Set up a session manager and load or create a new session
manager = web.session.manager(driver=driver, expire=10)
sessionID = manager.cookieSessionID()
if not manager.load(sessionID):

manager.create(sendCookieHeaders=False)
manager.sendCookieHeaders()

Get the session store for this application
store = manager.store(’testApp’)

def printPage(title, url, link, url2, link2, data):
print """
<html>

112 Chapter 1. Web Modules

<h1>%s</h1>
<p>%s</p>
<p>%s</p>
<p>%s</p>
</html>"""%(title, url, link, url2, link2, data)

Write a simple application
if not manager.created:

if web.cgi.has_key(’destroy’) and web.cgi[’destroy’].value == ’True’:
manager.destroy(ignoreWarning=True, sendCookieHeaders=False)
manager.sendCookieHeaders()
print web.header(’text/html’)
printPage(

’Session Destroyed’,
os.environ[’SCRIPT_NAME’],
’Start Again’, ’’,’’,’’

)
else:

print web.header(’text/html’)
manager.setExpire(manager.expireTime+5)
data = []
data.append(’SessionID: ’ +manager.sessionID)
data.append(’Store Keys: ’+str(store.keys()))
data.append(’Store App: ’+store.app)
data.append(’Variable1: ’+str(store[’Variable1’]))
data.append(’ExpireTime: ’+str(manager.expireTime))
printPage(

’Welcome back’,
os.environ[’SCRIPT_NAME’],
’Visit Again’,
os.environ[’SCRIPT_NAME’]+’?destroy=True’,
’Destroy Session’,
’<p>Every time you visit this page the expiry \
time increases 5 seconds</p>’+’</p><p>’.join(data)

)
else:

print web.header(’text/html’)
store[’Variable1’] = ’Python Rules!’
printPage(

’New Session Started’,
os.environ[’SCRIPT_NAME’],
’Visit Again’, ’’, ’’,
"Set variable1 to ’Python Rules!’"

)

connection.commit() # Save changes
connection.close() # Close the database connection

You can test this example by running the webserver ‘scripts/webserver.py’ and visiting
http://localhost:8080/doc/src/lib/webserver-web-session.py

1.11.14 API Reference

Driver Objects

driver (driver, environment, **params)
Used to return aDriver object.

driverThe type of driver being used. Currently only’database’ is allowed

environmentThe name of the environment being used. In the case of the database driver this is the string
prepended to all the tables used in the environment so that multiple environments can share the same

1.11. web.session — Persistent storage of session and automatic cookie handling 113

database.

**paramsAny parameters to be specified in the formatname=valuewhich are needed by the driver specified
by driver

classDriver
Driver objects have a number of methods which driver implementers must implement. These are docu-
mented in the source code. The following public methods are used to setup the environment.

completeSessionEnvironment ()
ReturnsTrue if the environment is correctly setup,False otherwise. In the case of the database
driver this method simply checks that all the necessary tables exist.

createSessionEnvironment ()
Creates the necessary environment. In the case of the database driver this method creates all the
required tables. If any of the tables already exist an error string is returned.

removeSessionEnvironment ([ignoreErrors=False])
Removes the environment. In the case of the database driver this method drops all the tables. If any of
the tables are not present a list of errors is returned unlessignoreErrorsis True

Manager Objects

manager (driver, [expire=86400], [path], [domain], [comment], [maxAge], [seed], [cleanupProbability],
[**driverParams])

Used to return a sessionManager object.

Manager Parameters:

driver and **driverParamsIf driver is a string, any extra parameters passed to the
web.session.manager() function are passed onto theweb.session.driver()
function to create a driver. Alternativelydriver can be aDriver object as returned by
web.session.driver() and no**driverParamsneed to be specified.

expireThe number of seconds a newly created session should be valid for. If not specified the default is
86400 seconds which is 24 hours.

seedWhen generating session IDs it is important a hacker cannot guess what the next session ID will be
otherwise they could make a cookie so that the application thinks they are someone else. You can
specify aseedwhich is simply a string to make the generation of session IDs even more random. The
default is’PythonWeb’ .

cleanupProbabilityEvery so often expired sessions and their corresponding data need to be removed from
the session store. There is a probability specified bycleanupProbabilitythat this cleanup will occur
when aManager object is created. IfcleanupProbabilityis 1 cleanup is done every time aManager
is created. IfcleanupProbabilityis 0 no automatic cleanup is done and cleanup is left to the adminis-
trator. The default is0.05 which means old session information is removed roughly every 20 times a
Manager object is created.

Cookie Parameters:

pathThe path of the domain specified bydomainfor which the cookie is valid. If not specified the default
is ’/’ which means the whole website. XXX is this correct?

domainThe domain for which the cookie is valid. If not specified the default is’’ which means any domain.
XXX is this correct?

commentAn optional comment for your cookie to explain what it does or who set it

maxAgeThe length of time in seconds the cookie should be valid for. If set to0 the cookie will last until the
web browser is closed. If not set it will take the value of theexpireparameter.

classManager
All sessionManager objects have theread only member variables which you should not set:

114 Chapter 1. Web Modules

sessionID
The session ID for the current session. This is a unique 32 character string set after a session is created
or loaded. It isNone before that time.

expire
The expire length in seconds (the minimum length of the session)

seed
The default seed used to generate the session ID

cookie
A dictionary containing the cookie parameters.

error
If an error occurred loading a session, for example the session ID did not exist or had expired, the error
is available through this attribute. If no error occurred the value isNone.

cleanupProbability
The probability of checking for, and removing expired sessions

response headers
A list of cookie headers in the WSGI format(type, value)

sent headers
A list of the cookie headers printed aftersendCookieHeaders() has been called. Useful for
debugging

load ([sessionID=None])
Attempt to load the session with the session IDsessionID. If sessionIDis not specified the session ID is
obtained from a cookie usingos.environ . If your environment doesn’t support loading of a cookie
in this wayseesionIDshould be specified. If the session exists and is valid it is loaded and the method
returnsTrue otherwise it returnsFalse and you should create a new session usingcreate() . The
reason the session could not be loaded is set to theerror attribute.

create ([sendCookieHeaders=True], [expire])
Generate a new session ID and start a new session with it. IfsendCookieHeadersis True a
Set-Cookie HTTP header is immediately printed. IfFalse a WSGI (type, info) header
is appended toresponse headers so the application can handle the header itself. Ifexpireis the
number of seconds the session should be valid for. If not specified the value of theexpire attribute
is used. Returns the new session ID.

store (app)
Return a sessionStore object for manipulating values in the application’s store.appis the application
name as a string made up of the charactersa-z , A-Z , 0-9 and - . . The application name must
be between 1 and 255 characters in length. The application names do not have to be the same as
application names used by theweb.auth module, although these are the most appropriate choices.
If you are not using multiple applications you should still give your application a name, perhaps
’default’ for example.

destroy ([sessionID], [sendCookieHeaders=True], [ignoreWarning=False])
Remove all session information for the session. IfsessionIDis specified all session information for
sessionIDis removed. IfsendCookieHeadersis True a Set-Cookie HTTP header is immediately
printed. If False a WSGI(type, info) header is appended toresponse headers so the
application can handle the header itself. IfignoreWarningis not set toTrue aSessionWarning is
raised explaining why destroying sessions is not a good idea.
Warning: Destroying sessions is strongly not recommended since any other application currently
using the session store may crash as the session information will have been removed. If you wish
to remove all data from the session store it would be better to use theStore object’s empty()
method, emptying the store but leaving the session intact. If you must remove a session use
setExpire(time.time()) to make the session expire immediately or send a cookie built with
deleteCookieString() . Any applications using the session will still be able to access the infor-
mation if they have already loaded the session but will not be able to load the session again.

genSessionID ([seed])
Obtain a new session ID based onmd5. If after 100 attempts no new session ID has been created
because the IDs generated already exist, aSessionError is raised. Ifseedis specified it is used to
make the generation of session ID more random, otherwise the valueseed is used.

1.11. web.session — Persistent storage of session and automatic cookie handling 115

cookieSessionID ([environ=None], [noSessionID=”])
Obtain a session ID from theHTTP COOKIEenvironmental variable. The defaultenviron dictio-
nary isos.environ . If you wish to provide your own environment dictionary (for example you are
using a WSGI application) you can specifyenviron. If the session ID cannot be loadednoSessionIDis
returned which by default is an empty string.

cleanup ([min], [max], [ignoreWarning=False])
Remove and information related to sessions which have expired between the timesmin and max.
All times are in seconds since the epoch (00:00:00 UTC, January 1, 1970). Ifmin is not specified
it is assumed to be0 (the beginning of the epoch), ifmax is not specified it is assumed to be the
current time. If you specify a valuemaxgreater than the current time returned bttime.time() a
SessionWarning is raised. To ignore the warning setignoreWarningto True .

Warning: You should not set a value ofmaxgreater than the current time unless you understand
the risk since doing so will remove sessions which haven’t yet expired. If an application is using the
session store and its session is cleaned up, that application may crash.

setExpire (expireTime,[sessionID])
The method is used to change the time an existing session will expire or to set a new expiry date
if it has already expired.expireTimeis the time you want the session to expire in seconds since the
epoch (00:00:00 UTC, January 1, 1970).expireTimeis NOT the extra number of seconds to allow
the session to exist for. IfsessionIDis specified the expire time of the session with IDsessionIDis
updated, otherwise the current session expire time is modified.

valid ([sessionID])
If sessionIDis specified the validity of the session with IDsessionIDis checked. Otherwise the
current session is checked. ReturnsTrue if the session is valid,False if the session has expired.
A SessionError is raised if the session does not exist. Whether or not a session exists can be
checked with theexists() method.

exists ([sessionID])
If sessionIDis specified the session with IDsessionIDis checked. Otherwise the current session is
checked. ReturnsTrue if the session is exists,False if the session does not exist. No comment
is made on whether or not the session is still valid, instead this can be checked with thevalid()
method.

sendCookieHeaders ()
Uses Python’sprint statement to send any headers in theresponse headers attribute to the
standard output, appending the exact strings printed to thesend headers attribute for debugging
purposes. Used by thecreate() anddestroy() methods to send cookie headers so could be
over-ridden in derived classes to change cookie handling behaviour.

setCookie ([maxAge], [sendCookieHeaders=False])
Get a cookie string fromsetCookieString() to set a new cookie, parse the string into a WSGI
(type, info) pair and append it to theresponse headers attribute. IfmaxAgeis not speci-
fied the default specified in the class creation is used. AmaxAgeof 0 means the cookie expires when
the browser is closed otherwisemaxAgeshould be the length of time in seconds the cookie should
remain valid for. IfsendCookieHeadersis True , sendCookieHeaders() is called to send the
cookie header.

setCookieString ([maxAge])
Returns an HTTP header to set a cookie using the default cookie values set in the class constructor. If
maxAgeis not specified the default specified in the class creation is used. AmaxAgeof 0 means the
cookie expires when the browser is closed otherwisemaxAgeshould be the length of time in seconds
the cookie should remain valid for.

deleteCookie ([sendCookieHeaders=False])
Get a cookie string fromdeleteCookieString() to set the expire time of the cookie to one
second, parse it into a WSGI(type, info) pair and append it to theresponse headers
attribute. If sendCookieHeadersis True , sendCookieHeaders() is called to send the cookie
header.

deleteCookieString ()
Returns an HTTP header to set the expire time of the session cookie to 1 second, effectively forcing it
to expire.

116 Chapter 1. Web Modules

Store Objects

TheStore object is obtained from thestore() method of theManager object. It is used to manipulate the
session store of the application specified in thestore() method.

classStore
Store objects have the following attribute:

app
This is the name of the application whose store we are manipulating.app can be set to another
application’s name in order to manipulate a different session store. Application names are strings
made up of the charactersa-z , A-Z , 0-9 and- . and are between 1 and 255 characters in length.

Store objects have the following methods:

set (key, value)
Set the value ofkeyto the valuevaluein the session store.valuecan be any Python object capable of
being pickled. See Python’spickle module for more information.

get (key)
Get the value ofkeyfrom the session store.

delete (key)
Removekeyand its associated value from the session store.

empty ()
Empty this application’s session store of all information removing all keys and values but leaving the
session itself and other application’s stores intact.

has key (key)
ReturnsTrue if keyexists on the session store otherwiseFalse .

keys ()
Returns a sequence of store keys. The order of the keys is not defined. Keys obtained from this method
cannot be set directly. Instead theset() method should be used.

items ()
Returns a tuple of(key, value) pairs for each key in the store. The order of the values is not
defined. Values and keys obtained from this method cannot be set directly. Instead theset() method
should be used.

values ()
Returns a sequence of store values. The order of the values is not defined. Values obtained from this
method cannot be set directly. Instead theset() method should be used.

Store objects also implement the following methods: getitem (key) , setitem (key,
value) and delitem (key) which map directly to theget(key) , set(key) and
delete(key) methods respectively and allow theStore object to be treated similarly to a dictionary as
demonstrated earlier in the documentation.

The start() Function

start (app, environmentName[, environmentType=’database’] [, expire=0] [, setupSessionEnviron-
ment=False] [, path=’/’] [, domain=”] [, comment=”Built in Python using web.session from python-
web.org”] [, maxAge=None] [, seed=’PythonWeb’] [, cleanupProbability=0.05] [, **environment-
Params])

Used to return aStore object.

Most of the options are self-explanitory.app is the name of the application (which should not be’auth’
since theweb.auth module uses that name.setupSessionEnvironmentcan be set toTrue to automatically
create the correct tables if any are missing (if only some of the tables are present all session tables are
removed destroying any information contained them before all the tables are recreated).environmentParams
are any parameters used by the environment. IfenvironmentTypeis ’driver’ you would also need to
specify acursorparameter for example.domain, comment, maxAge, seedandcleanupProbability=0.05are
the same as specified in themanager() function described earlier.

1.11. web.session — Persistent storage of session and automatic cookie handling 117

1.12 web.template — For the easy display of data as HTML/XML

Theweb.template module currently only provides one function,pasrse() , used to parse a template.

parse (type=’python’, dict=None [,file=None][,template=None][,useCompiled=’auto’
][,swapTemplatePaths=None])

Simple wrapper method to load and parse a template from the options given.

typeThe type of template to parse. Can be’python’ , ’cheetah’ , ’xyaptu’ or
’dreamweaverMX’ . A ’python’ template is a string using the dictionary filling format.

dictA dictionary of values used to fill the template

fileThe file containing the template. If not specified orNone, templatemust be specified.

templateThe template as a string. If not specified orNone, file must be specified.

useCompiledOnly used for Cheetah. Specifies whether or not a compiled version of the template should be
used.

swapTemplatePathsOnly used for DreamweaverMX. IfNone nothing is done. Otherwise can be set to
(oldPath, newPath) to swap paths in the template itself before the parsing is done.

Simple example:

>>> import web.template
>>> print web.template.parse(dict={’w’:’World!’}, template="Hello %(w)s")
Hello World!

This is the same as doing this in Python:

>>> print "Hello %(w)s"%{’w’:’World!’}
Hello World!

1.12.1 Cheetah Template

Cheetah is a powerful, stable and well documented templating system. It works by parsing the template into a
Python script and then executing that script with the dictionary to produce output. The performance of Cheetah
can be improved by writing this script to a file and executing it each time Cheetah is run rather than re-generating
it every time.

TheuseCompiledparameter of theparse() function can be used to determine the behaviour of this compilation.
If useCompiledisFalse the template is parsed every time. This is the slowest but simplest option. IfuseCompiled
is True the compiled template is used even if the original template has changed. This is the fastest option but you
must manually tell Cheetah to recompile the template if it changes. IfuseCompiledis ’auto’ then Cheetah will
use the compiled file as long as the template has not been modified. If it has it will automatically recompile the
template.

Warning: This is the best comprimise. IfuseCompiledis True or ’auto’ then Cheetah must have write access
to the directory containing the templates. If it doesn’t you may get Internal Server Errors, particularly if you are
usingweb.error with Cheetah templates to catch errors as an error will be thrown in the error catching code
and this will lead to an error that is hard to track down.

You can also use Cheetah directly by importing it as follows:

import web
import Cheetah

Here is an example Cheetah template:

<?xml version="1.0" encoding="iso-8859-1"?>

118 Chapter 1. Web Modules

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>$title</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
</head>
<body>
<h1>$title</h1>
$welcomeMessage
#if $testVar == True
The test variable is True
#else
The test variable is not True
#end if
</body>
</html>

Here is a program to manipulate it:

#!/usr/bin/env python

import sys; sys.path.append(’../../../’) # show python where the web modules are
import web.template

dict = {
’welcomeMessage’:’Welcome to the test page!’,
’testVar’:True,
’title’:’Cheetah Example’,

}

print web.template.parse(
type=’cheetah’,
file=’file-web-template-cheetah.tmpl’,
dict=dict

)

And here is the output produced:

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Cheetah Example</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
</head>
<body>
<h1>Cheetah Example</h1>
Welcome to the test page!
The test variable is True
</body>
</html>

See Also:

Cheetah Template Homepage
(http://cheetahtemplate.org/)

The Cheetah homepage has full documentation for using Cheeath and explains the full syntax available and
the range of options that can be used.

1.12. web.template — For the easy display of data as HTML/XML 119

1.12.2 XYAPTU Templating

XYAPTU is an ASPN recipie based on YAPTU. Both modules are included with the web modules and can be
imported directly:

import web
import xyaptu, yaptu

Here is an example xyaptu template:

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>$title</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
</head>

<body>
<p>$welcomeMessage</p>

<py-open code="if testVar:" />
The variable is: True

<py-clause code="else:" />
The variable is: False

<py-close/>

</body>
</html>

Here is a program to manipulate it:

#!/usr/bin/env python

import sys; sys.path.append(’../../../’) # show python where the web modules are
import web.template

dict = {
’welcomeMessage’:’Welcome to the test page!’,
’testVar’:True,
’title’:’XYAPTU Example’,

}

print web.template.parse(
type=’xyaptu’,
file=’file-web-template-xyaptu.tmpl’,
dict=dict

)

And here is the output produced:

120 Chapter 1. Web Modules

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>XYAPTU Example</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
</head>

<body>
<p>Welcome to the test page!</p>

The variable is: True

</body>
</html>

See Also:

XYAPTU Information on ASPN
(http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/162292)

This page is where the recipie first appeared and is where the most complete documentation can be found.

1.12.3 Dreamweaver MX

The web modules can also parse Dreamweaver MX templates as long as they only use standard Editable Regions
and the regions are empty so that the tags look like this:

<!-- TemplateBeginEditable name="content" --><!-- TemplateEndEditable -->

DreamweaverMX templates are passed just like the others except you settypeto ’dreamweaverMX’ .

Warning: If you set thedoctitle editable region please remembe to include<title> and</title> tags
around the title you set as the template doesn’t include these for you.

Here is an example Dreamweaver MX template:

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<!-- TemplateBeginEditable name="doctitle" -->
<title>PythonWeb.org - Dreamweaver MX Example</title>
<!-- TemplateEndEditable -->
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<!-- TemplateBeginEditable name="head" --><!-- TemplateEndEditable -->
</head>

<body>

<h1><!-- TemplateBeginEditable name="Title" -->Web Modules<!-- TemplateEndEditable --></h1>
<!-- TemplateBeginEditable name="Content" -->
<p> </p>
<!-- TemplateEndEditable -->

</body>
</html>

1.12. web.template — For the easy display of data as HTML/XML 121

Here is a program to manipulate it:

#!/usr/bin/env python

import sys; sys.path.append(’../../../’) # show python where the web modules are
import web.template

dict = {
’Content’:’Welcome to the test page!’,
’doctitle’:’Dreamweaver MX Example’,
’Title’:’Dreamweaver MX Example’,

}

print web.template.parse(
type=’dreamweaverMX’,
file=’file-web-template-dreamweaverMX.dwt’,
dict=dict

)

And here is the output produced:

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<!-- InstanceBeginEditable name="doctitle" -->Dreamweaver MX Example<!-- InstanceEndEditable -->
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<!-- InstanceBeginEditable name="head" --><!-- InstanceEndEditable -->
</head>

<body>

<h1><!-- InstanceBeginEditable name="Title" -->Dreamweaver MX Example<!-- InstanceEndEditable --></h1>
<!-- InstanceBeginEditable name="Content" -->Welcome to the test page!<!-- InstanceEndEditable -->

</body>
</html>

1.13 web.util — Useful utility functions that don’t fit elsewhere

This module provides a number of functions which come in handy when programming web applications but that
don’t fit in elsewhere. It is a catch all module for useful leftovers.

wrap (text, width)
A word-wrap function that preserves existing line breaks and most spaces in the text. Expects that existing
line breaks are posix newlines. (ie backslash n)

textThe text to wrap

widthThe maximum number of characters in a line

strip (html,[validTags=[]])
Strip illegal HTML tags from string

htmlThe HTML which needs some tags stripping

validTagsA list or tuple of tags to leave in place

runWebServer ([root=’../’, cgi=’/cgi-bin’,])
Run a simple webserver on port 8080 on localhost. The root of the website corresponds to the directory
root. cgi is URL of the the cgi-bin where files can be executed. Once this command is run code execution

122 Chapter 1. Web Modules

stops as the webserver listens for requests so there is no point in writing code after this command as it will
not be run.

Warning: NOT SUITABLE FOR COMMERCIAL USE.

dirThe only directory where scripts are allowed to run. Directory names should be the full URL path from
the root of the webserver and therefore should begin with/

table (columns, values,[width=80], [mode])
Pretty print a table of data for display in a terminal of widthwidth

Warning: This function has changed radically from version 0.4.0

columnsThe names of the columns in the order they are displayed in each row of values.

valuesThe data to be displayed in the format:

(
(’column1value1’, ’column2value1’, ’column3value1’, ’column4value1’),
(’column1value2’, ’column2value2’, ’column3value2’, ’column4value2’),
(’column1value3’, ’column2value3’, ’column3value3’, ’column4value3’),

)

The values and column headings can be any object which can be converted to a string usingstr() .

widthThe wrap width of the string produced. The default is80 which means the table will we wrapped to
the width of a standard terminla or command line prompt. Ifwidth is set to0 no wrapping is produced.

displayIf displayis set to’terminal’ the line ending at the wrap width (specified bywidth) will not be
added since the line will wrap around to the next line anyway. Adding the linebreak would result in
blank lines appearing.

modeIf modeis set to’sql’ the values are encoded in a way to representNone asNULLand userepr()
whenstr() would be ambiguous.

For example:

#!/usr/bin/env python

import sys; sys.path.append(’../../../’) # show python where the web modules are

import web.util
columns = [

’column1Heading’,
’column2Heading’,
’column3Heading’,
’column4Heading’

]
values = [

[’column1value1’, ’column2value1’, ’column3value1’, ’column4value1’],
[’column1value2’, ’column2value2’, ’column3value2’, ’column4value2’],
[’column1value3’, ’column2value3’, ’column3value3’, ’column4value3’],

]
print "Printing the table with wrap width=0...\n"
print web.util.table(columns, values, width=0)
print "Printing the table with wrap width=60...\n"
print web.util.table(columns, values, width=60)

1.13. web.util — Useful utility functions that don’t fit elsewhere 123

The output produced is:

Printing the table with wrap width=0...

+----------------+----------------+----------------+----------------+
| column4Heading | column3Heading | column2Heading | column1Heading |
+----------------+----------------+----------------+----------------+
column4value1	column3value1	column2value1	column1value1
column4value2	column3value2	column2value2	column1value2
column4value3	column3value3	column2value3	column1value3
+----------------+----------------+----------------+----------------+

Printing the table with wrap width=60...

+----------------+----------------+----------------+--------
| column4Heading | column3Heading | column2Heading | column1
+----------------+----------------+----------------+--------
| column4value1 | column3value1 | column2value1 | column1
| column4value2 | column3value2 | column2value2 | column1
| column4value3 | column3value3 | column2value3 | column1
+----------------+----------------+----------------+--------

--------+
Heading |
--------+
value1 |
value2 |
value3 |
--------+

Warning: If you don’t set the wrap width and your table is wider than the terminal then the terminal will wrap the
table output itself. If this happens it will wrap each induvidual line of text rather than the whole table producing
output that looks more like this:

+----------------+----------------+--------------
--+----------------+
| column4Heading | column3Heading | column2Headin
g | column1Heading |
+----------------+----------------+--------------
--+----------------+
| column4value1 | column3value1 | column2value1
| column1value1 |
| column4value2 | column3value2 | column2value2
| column1value2 |
| column4value3 | column3value3 | column2value3
| column1value3 |
+----------------+----------------+--------------
--+----------------+

1.14 web.xml — XSLT Transform

Theweb.xml module currently only provides one function,transform() , used to apply an XSL Stylesheet
to an XML document.

transform (input, stylesheet, output) input
The path to the XML file

stylesheetThe path to the stylesheet file

124 Chapter 1. Web Modules

outputThe file where the output should be written

For Example:

‘file-web-xml.xml’

<source>

<title>XSL</title>
<author>John Smith</author>

</source>

‘file-web-xml.xsl’

<xsl:stylesheet version = ’1.0’
xmlns:xsl=’http://www.w3.org/1999/XSL/Transform’>

<xsl:template match="/">
<h1>

<xsl:value-of select="//title"/>
</h1>
<h2>

<xsl:value-of select="//author"/>
</h2>

</xsl:template>
</xsl:stylesheet>

And the code to transform it:

‘command-web-xml.py’

#!/usr/bin/env python

import sys; sys.path.append(’../../../’) # show python where the web modules are
import web.xml
web.xml.transform("file-web-xml.xml","file-web-xml.xsl","xml.html")

This creates the output file ‘test.html’:

<?xml version="1.0"?>
<h1>XSL</h1><h2>John Smith</h2>

1.15 web.wsgi — Web Server Gateway Interface tools

The WSGI interface is a specification designed by Phillip J. Eby with contributions from the Python Web-SIG
mailing list which defines a proposed standard interface between web servers and Python web applications or
frameworks, to promote web application portability across a variety of web servers.

Theweb.wsgi module implements the WSGI interface for the Web Modules.

Note: The web server interface and tools proposed for previous versions of the modules have now been dropped
in favour of supporting the WSGI in their place. All components which were implemented have now been moved
into WSGI middleware components instead.

See Also:

PEP 333 - Python Web Server Gateway Interface
(http://www.python.org/peps/pep-0333.html)

This document specifies the Web Server Gateway Interface and defines some simple objects demonstrating
the approach.PEP 333 should be read before reading this documentation

It should also be noted that the web modules WSGI implementation is based heavily on Phillip J. Eby’s
wsgiref implementation

1.15. web.wsgi — Web Server Gateway Interface tools 125

Note: The WSGI specification is farily new and the author of this document is learning it as he goes along!
Consequently there may be important omissions or even errors. I would very much appreciate any comments or
corrections so please feel free to contact docs at pythonweb.org if you have any.

1.15.1 Introduction

What is a WSGI application?

The WSGI PEP can be quite confusing if all you want to do is write applications quickly and easily. The best way
to explain the WSGI is to work through an example demonstrating how an application written as a CGI script has
to be modified to work as a WSGI application.

Consider the CGI script code below:

#!/usr/bin/env python
print ’Content-type: text/plain\n\n’
print ’Hello world!’

This does nothing more than print the words’Hello world!’ to a web browser in plain text. What we have
done is sent an HTTP headerContent-type: text/plain\n\n and then a text string to the browser.
The webserver may also have sent a’200 OK’ response if the application didn’t crash.

To create the same result using a WSGI application we would use this code:

def application(environ, start_response):
start_response(’200 OK’, [(’Content-type’,’text/plain’)])
return [’Hello world!’]

WSGI servers are configured to look for an object with a particular name, usuallyapplication , and call it,
passing theapplication callable a dictionary namedenvironcontaining environmental variables and also a
function namedstart responsewhich must be called before the application returns a value. Our callable named
application is our WSGI application. You could name it differently if your WSGI server had a different
naming convention.

You may not be happy with the functionstart response being passed as a parameter to ourapplication
callable. Whilst this is not possible in some other languages it is perfectly legitimate in Python. This ability to
pass callables as function parameters is crucial to understanding how the WSGI works.

Here is an example to consider:

def b(text):
print text

def a(print_response):
print_response("Hello World!")
return "It worked!"

print a(b)

In this case we are passing the functionb to thea as the parameterprint response. We are then printing the value
returned froma. What do you think the result will be?

The answer is this:

Hello World!
It worked!

126 Chapter 1. Web Modules

Make sure you understand this example before you read on.

A WSGI application must do two things, these are:

1. Call thestart response function (passed to ourapplication callable) with the parametersstatus
andheadersin the correct order. This will set the status of the application and send the HTTP headers. In
our example the status is’200 OK’ meaning everything has gone according to plan and we only send one
header, theContent-type header with the valuetext/plain .

2. Return an iterable containing nothing but strings. In this example the iterable is simply a list containing one
string. The return value could equally well have been[’Hello’, ’ ’, ’world!’] but there was no
need to make things more complicated.

There are some big advantages in rewriting our code as a WSGI application:

• All HTTP headers are sent at the same time before the main content avoiding the possibility of sending
HTTP headers at the wrong time.

• The application has control over its status. For example if the application encountered an error it could send
an ’500 Error’ status message and the WSGI server would display its appropriate error page.

• And most importantly, by using callables in this standard way it is possible to chain together applications
called middleware components to provide applications with extra functionality with very little programming
effort.

What Are Middleware Components?

Consider the slightly more complicated example below using the imaginary session handling module
superSession :

#!/usr/bin/env python

import superSession
session = superSession.session()
print "Content-type: text/plain\n\n"
if session.has_key(’visited’):

print "You have already visited!"
else:

session[’visited’] = 1
print "This is your first visit."

We create a session object and display a different string depending on whether or not the user has visited the site
before. We could follow the approach above and create the following WSGI application to do the same thing:

def application(environ, start_response):
import superSession
session = superSession.session()
if session.has_key(’visited’):

text = "You have already visited!"
else:

session[’visited’] = 1
text = "This is your first visit."

start_response(’200 OK’, [(’Content-type’,’text/plain’)])
return [text]

This would be perfectly good and work perfectly well. We could now refactor the code again:

1.15. web.wsgi — Web Server Gateway Interface tools 127

def exampleApplication(environ, start_response):
if environ[’superSession’].has_key(’visited’):

text = "You have already visited!"
else:

environ[’superSession’][’visited’] = 1
text = "This is your first visit."

start_response(’200 OK’, [(’Content-type’,’text/plain’)])
return [text]

def session(application):
def app(environ, start_response):

if "superSession" not in environ:
import superSession
environ["superSession"] = superSession.session() # Options would obviously need specifying

return application(environ, start_response)
return app

application = session(exampleApplication)

We have separated out the session code into a different function and added a key to theenviron dictionary
called "session" which contains the session object. OurexampleApplication then accesses the ses-
sion object through theenviron dictionary. Note how we have renamed ourapplication function to
exampleApplication and mapped the nameapplication to thesession(exampleApplication)
object. The WSGI server will still be able to find a callable namedapplication and so will still be able to run
our application.

Thesession function is now what we call a middleware component as it sits in between the server and the appli-
cation. It gives the application new functionality but the result of callingsession(exampleApplication)
is also just a WSGI application (because the combined object still conforms to the rules listed earlier) and so the
server can still run the code.

The huge advantage of refactoring code in this way is that the session functionality can now easily be added
to any WSGI application using oursession function. By chaining together these middleware components
(which do not even have to be based on the Web Modules) WSGI applications can gain an enormous amount of
functionality for very little programming effort by using existing middleware components. This helps make code
easy to maintain and offers a very flexible programming methodology.

Callables, Classes or Functions?

I have been quite careful all the way through the introduction to describe the application and middleware as
callables and not just as functions (which is what they have happened to be so far). We could re-write the session
middleware component described in the previous section as follows:

class Session:
def __init__(self, application):

self.application = application

def __call__(self, environ, start_response):
if "superSession" not in environ:

import superSession
environ["superSession"] = superSession.session() # Options would obviously need specifying

return self.application(environ,start_response)

application = Session(exampleApplication)

If you think carefully about what is happening here you will realise that ourSession class behaves in exactly
the same way as the functionsession did in the previous example.

128 Chapter 1. Web Modules

The advantage of using a class rather than a function for a middleware component is that you can derive an-
other middleware component from an existing one that provides similar functionality without re-writing the entire
component.

The web.wsgi module contains middleware classes for all of the web modules functionality which you can
use on their own or as base classes for your own middleware components including session functionality. The
middleware components are all described later on in this documentation.

Running WSGI Applications

The Python web modules come with two solutions for running WSGI applications, a WSGI server and a
runCGI() middleware component allowing WSGI applications to be run from CGI scripts on servers such
as Apache.

Note: It much faster to execute WSGI applications through a dedicated WSGI server than to run them as CGI
scripts. When a CGI script is executed all the Python libraries and modules the script uses need to be loaded into
memory and then removed once the script exists. This has to happen for every request so there is an unecessary
delay before the WSGI application is even executed. When using a WSGI server the libraries and modules only
need to be loaded once and are then available for any subsequent requests so simple web requests can be handled
perhaps 5-10 times faster.

The PythonWeb WSGI Server

A WSGI server has to be able to convert a URL to a path on a drive, find the application namedapplication
within the file specified and call it, passing the application a dictionary of environmental variables and a
start response function to set the status of the application and send the HTTP headers.

Note: As we have seen the object namedapplication may not be an application at all, it may in fact be a
chain of middleware components and an application, but the WSGI server treats it in the same way because, as
we have already seen, applications with middleware stacks behave in exactly the same way as an application on
its own.

The Python Web Modules come with just such a WSGI server named ‘WSGIServer.py’ and available in the
‘scripts’ directory of the Web Modules distribution.

To use the WSGI server simply run the ‘WSGIServer.py’ file from the command line by executing the following:

> python WSGIServer.py

A sample WSGI application should be available byhttp://localhost:8000/doc/src/lib/wsgi-simple.py with a web
browser.

‘WSGIServer.py’ also takes a series of arguments to customise its behaviour. These can be viewed by running
python WSGIServer.py -h at the command line.

The runCGI() Method

You may not be in a situation where you have access to a WSGI server. The Python web modules also come with
a code to allow WSGI applications and middleware to be run in a CGI environment such as Apache.

If you want to run a WSGI as a CGI application you need to turn it back into one. This can be done very simply
by using the middleware componentweb.wsgi.runCGI as shown below:

1.15. web.wsgi — Web Server Gateway Interface tools 129

def application(environ, start_response):
start_response(’200 OK’, [(’Content-type’,’text/plain’)])
return [’Hello world!’]

import web.wsgi.cgi
web.wsgi.runCGI(application)

The application can then be run in a normal CGI webserver.

To test this approach run ‘webserver.py’ using python webserver.py in the ‘scripts’ directory and visit
http://localhost:8000/doc/src/lib/wsgi-simple-cgi.py to see a sample CGI WSGI application running.

1.15.2 Writing Applications

It can be slightly complicated to write your own WSGI applications so theweb.wsgi.base provides a sample
class from which you can derive your own application class. The class has the following API:

classBaseApplication ([status=’200 OK’], [headers=[(’Content-type’,’text/html’)]])
The class defines the following attributes:

environ
A dictionary of environment variables similar toos.environ but also containing entries from the
WSGI server and any middleware being used. Theenviron dictionary is the main way your appli-
cation will have access to the environment. You should not need to changeenviron .

status
A string of the form’error code messgae’ which can be used to set the HTTP status code
of the application. For example’200 OK’ for a normal application,’500 Error’ if there was a
server error.

headers
A list of (field-name, field-value) tuples suitable for use in the WSGI
start response function. Any headers your application needs to send should be specified
by this list in the order they should be sent.Note: The default value of theheaders attribute is set
to be[(’Content-type’,’text/html’)] in the class constructor, so if you do not want this
HTTP header you should set a different value in the constrcutor or in your application.

The (field-name, field-value) format could be easily made into HTTP header messages
suitable for direct printing:

messages = []
for header in self.headers:

messages.append("%s: %s"%header)

Warning: WSGI applications and middleware should not normally use theprint statement in the
same way as in CGI scripts. Instead strings should be sent to theoutput() method where they will
be returned at the end of execution of the class in accordance with the WSGI specification.

output
A list of strings to be returned at the end of the application. The class defines theoutput() method
which is used to directly append strings tooutput so there should be no need to accessoutput
directly.

The class defines the following methods:

start ()
This method should be over-ridden in derived classes to provide your application’s functionality.

output (*text)
Takes one or more strings and appends them to theoutput attribute when they will be returned at
the end of program execution to display the program output. For example:

130 Chapter 1. Web Modules

self.output(’one’)
self.output(’one’, ’two’)

Note: If the values are not strings, they are convertes to strings using the builtin functionstr() .

call (environ, start response)
You should not need to modify this method but is documented here for a complete under-
standing as it provides the functionality which makes derived classes WSGI applications. This
method sets up theenviron attribute and callsstart() . Once start() returns, it calls
start response(self.status, self.headers) to set the status and headers and returns
self. output .

To create the’Hello World!’ example used at the start of the documentation with theBaseApplication
class we could do the following:

import web.wsgi.base

class Application(web.wsgi.base.BaseApplication):
def start(self):

self.output(’Hello World!’)

application = Application()

Note: In this example we have used a class instance as the application whereas we previously used a function
definition. Class instances must be initialised.

To use different HTTP headers we could do the following:

application = Application(headers=[(’Content-type’,’text/plain’)])

For application to always be treated as having failed we could set the status to’500 Error’

application = Application(status=’500 Error’)

To allow be able to set the text of the’Hello World!’ message from the class constructor we need to modify
the class:

import web.wsgi.base

class Application(web.wsgi.base.BaseApplication):

def __init__(self, status=’200 OK’, headers=[(’Content-type’,’text/html’), text=’Hello World!’]):
self.text = text
web.wsgi.base.BaseApplication.__init__(self, status, headers)

def start(self):
self.output(self.text)

application = Application(text=’Hello World Again!’)

Warning: When deriving your own classes it is important you do not accidently over-write any of the attributes
or methods of the base class, otherwise your class may not function as you intended.

1.15. web.wsgi — Web Server Gateway Interface tools 131

1.15.3 Writing Middleware

Middleware classes usually do one of 3 things:

• Change theenviron dictionary

• Change the application’sstatus

• Change the HTTPheaders

Theweb.wsgi.base provides a classBaseMiddleware which has methods to allow you to easily accom-
plish each of these things.

classBaseMiddleware (application)
applicationshould always be the first parameter to a derived middleware class, but you may also wish to
have other parameters in derived classes to allow the middleware to be configured.

The class defines the following attributes:

application
The WSGI application (or middleware stack) to which this middleware should be added.

The class defines the following methods:

start ()
This method should be over-ridden in derived classes to provide your application’s functionality.

output (*text)
Takes one or more strings and appends them to theoutput attribute when they will be returned at
the end of program execution to display the program output. For example:

self.output(’one’)
self.output(’one’, ’two’)

call (environ, start response)
You should not need to modify this method but is documented here for a complete understanding as it
provides the functionality which makes derived classes WSGI middleware.

This method intercepts theenviron dictionary as well as theheaders andstatus parameters
sent by the WSGI server to thestart response() function. It then sends theenviron dictio-
nary to theenviron() method for modification. Thestatus , headers andexc info param-
eters are sent to theresponse() method which controls the order in which the different parameters
are modified. Theresponse() method sends the parameters to thestatus() , headers and
exc info() methods for modification. The new values are then returned to thecall where
a modified application object is returned.

response (status, headers,[exc info=None])
Calls thestatus() , headers andexc info() methods to modify the respective parameters
then returns the modified values in the orderstatus, headers, exc info to the call () method.
Can be over-ridden to change the order in which the parameters are modified.

environ (environ)
Provides the dictionaryenvironfor modification. Must return theenviron dictionary to be passed
on down the middleware chain.

status (status)
Provides thestatusstring for modification. Must return thestatus string to be passed on down the
middleware chain.

headers (headers)
Provides theheaderslist for modification. Must return theheaders list to be passed on down the
middleware chain.

exc info (exc info)
Provides theexc info tuple object generated by a previous error (if one exists) for modification. Must
return theexc info tuple to be passed on down the middleware chain.

132 Chapter 1. Web Modules

transform (output)
Used to transform the body of output returned from the previous item in the middleware stack.
Be aware that you may need to have checked content-type headers and change the content length
header if it is set if you intend to change the length of the returned information.
outputis an iterable and an iterable should be returned from the output.

To produce your own middleware class, simply over-ride the appropriate methods in your class derived from the
BaseMiddleware class, remembering to return the value you wish to passed on along the middleware chain. If
you wish to pass information between the various methods, you should set member variables of the classes.

With long middleware chains and functions being passed as parameters down the chain it can get a bit confusing
to keep track of program flow.

Program flow is actually very straightfoward. The first piece of middleware is run first, any changes to the
environ dictionary are passed on to the next piece of middleware and so on down the chain. Once the
start response function is called thestatus , headers and application output are sent back up the chain
to the server where they are sent to the web browser.

Here is a test application demonstrating middleware and program flow (the headers are not valid HTTP headers
obviously):

#!/usr/bin/env python

import sys; sys.path.append(’../../../’)
import web.wsgi.base, time

class Application(web.wsgi.base.BaseApplication):
def start(self):

self.output(’Environ Order:\n’)
self.environ[’Application’] = time.time()
time.sleep(1)
self.headers.append((’Appliction’,str(time.time())))
self.output(’Middleware1 ’,self.environ[’Middleware1’])
self.output(’\n’)
self.output(’Middleware2 ’,self.environ[’Middleware2’])
self.output(’\n’)
self.output(’Application ’, self.environ[’Application’])
self.output(’\n’)

class Middleware1(web.wsgi.base.BaseMiddleware):
def environ(self, environ):

time.sleep(1)
environ[’Middleware1’] = time.time()
return environ

def headers(self, headers):
time.sleep(1)
headers.append((’Middleware1’,str(time.time())))
return headers

def transform(self, output):
return output + [’Middleware1\n’]

class Middleware2(web.wsgi.base.BaseMiddleware):
def environ(self, environ):

time.sleep(1)
environ[’Middleware2’] = time.time()
return environ

def headers(self, headers):
time.sleep(1)
headers.append((’Middleware2’,str(time.time())))
return headers

1.15. web.wsgi — Web Server Gateway Interface tools 133

def transform(self, output):
return output + [’Middleware2\n’]

print "Running test..."
application = web.wsgi.runCGI(Middleware1(Middleware2(Application())))

The program will not run from a WSGI server because of the incorrect HTTP headers but you can run it from the
command line. The output should look something like this:

Status: 200 OK
Content-type: text/html
Appliction: 1105847968.69
Middleware2: 1105847969.69
Middleware1: 1105847970.69

Environ Order:
Middleware1 1105847966.68
Middleware2 1105847967.69
Application 1105847967.69

Transform Order:
Middleware2
Middleware1

You can see thatenviron is modified byMiddleware1 thenMiddleware2 thenApplication . Headers
and return transforms are made in exactly the opposite order.

At each stage of the application and middleware chain the component can either return an list of strings in one go
or return an iterable.

1.15.4 The PythonWeb Middleware Components

Theweb.wsgi module contains middleware components to make use of all the functionality of the Python Web
Modules.

All PythonWeb WSGI middleware components are classes which take another WSGI middleware component or
an application as the first argument. Middleware components usually add entries to theenviron dictionary so
that the application can use their functionality by using values from the dictionary.

The subsequent arguments configure how the middleware behaves. The documentation for theweb.wsgi.cgi
module is a good starting point.

web.wsgi.cgi – CGI Variable Access

Theweb.wsgi.cgi module provides one classCGI which adds the key’web.cgi’ to theenviron dictio-
nary. Middleware or applications further down the chain can access CGI variables usually accessed through the
web.cgi object by usingenviron[’web.cgi’] . The class takes no arguments.

For example:

134 Chapter 1. Web Modules

import web.wsgi.base, web.wsgi.cgi

class Application(web.wsgi.base.BaseApplication):
def start(self):

if self.environ[’web.cgi’].has_key(’test’) and self.environ[’web.cgi’][’test’].value == ’True’:
self.output(’<html>You visited the URL</html>’)

else:
self.output(’<html>Visit URL</html>’)

application = web.wsgi.cgi.CGI(Application())

web.wsgi.database – Database Access

The web.wsgi.database module provides one classDatabase which adds the keys
’web.database.connection’ and ’web.database.cursor’ to theenviron dictionary based on
the parameters specified in the class constructor.

environ[’web.database.connection’] contains theconnection object

environ[’web.database.cursor’] contains thecursor object

Middleware or applications further down the chain can access the database through these objects as follows:

import web.wsgi.base, web.wsgi.cgi

class Application(web.wsgi.base.BaseApplication):
def start(self):

self.output(’<html>’)
self.environ[’web.database.cursor’].execute(’SELECT * FROM test’)
results = self.environ[’web.database.cursor’].fetchall()
for result in results:

self.output(’<p>%s</p>’%result)
self.output(’</html>’)

application = web.wsgi.database.Database(
Application(),
type=’MySQLdb’,
database=’test’,

)

web.wsgi.environment – Environment Information

Theweb.wsgi.environment module provides one classEnvironment which adds the following informa-
tion to theenviron dictionary based on the parameters specified in the class constructor.

environ[’web.environment.name’] A string containing the name of the environment

environ[’web.environment.type’] A string containing the type of the environment. This can cur-
rently only be’database’

Middleware or applications further down the chain can access these variables as follows:

1.15. web.wsgi — Web Server Gateway Interface tools 135

import web.wsgi.base, web.wsgi.environment

class Application(web.wsgi.base.BaseApplication):
def start(self):

self.output(’<html>’)
self.output(’<p>Name: %s</p>’%self.environ[’web.environment.name’])
self.output(’<p>Type: %s</p>’%self.environ[’web.environment.type’])
self.output(’</html>’)

application = web.wsgi.environment.Environment(
Application(),
name=’testEnv’,
type=’database’,

)

web.wsgi.session – Session Handling

The web.wsgi.session module provides one classSession which adds the following information to the
environ dictionary based on the parameters specified in the class constructor.

environ[’web.session.driver’] A Driver object as returned byweb.session.driver()

environ[’web.session.manager’] A Manager object as returned byweb.session.manager()

environ[’web.session.store’] A session Store object as returned by
environ[’web.session.manager’].store(app

The web.wsgi.session.Session middleware requires the presence of theDatabase and
Environment middleware and can be used as shown in the example below:

from web.wsgi import *

class simpleApp(base.BaseApplication):

def printPage(self, title, url, link, url2, link2, data):
self.output("""

<html>
<h1>%s</h1>
<p>%s</p>
<p>%s</p>
<p>%s</p>
</html>"""%(title, url, link, url2, link2, data)

)
def start(self):

Write a simple application
if not self.environ[’web.session.manager’].created:

if self.environ[’web.cgi’].has_key(’destroy’) and self.environ[’web.cgi’][’destroy’].value == ’True’:
self.environ[’web.session.manager’].destroy(ignoreWarning=True, sendCookieHeaders=False)
self.headers.append(self.environ[’web.session.manager’].response_headers[-1])
self.printPage(

’Session Destroyed’,
self.environ[’SCRIPT_NAME’],
’Start Again’, ’’,’’,’’

)
else:

self.environ[’web.session.manager’].setExpire(self.environ[’web.session.manager’].expireTime+5)
data = []
data.append(’SessionID: ’ +self.environ[’web.session.manager’].sessionID)
data.append(’Store Keys: ’+str(self.environ[’web.session.store’].keys()))

136 Chapter 1. Web Modules

data.append(’Store App: ’+self.environ[’web.session.store’].app)
data.append(’Variable1: ’+str(self.environ[’web.session.store’][’Variable1’]))
data.append(’ExpireTime: ’+str(self.environ[’web.session.manager’].expireTime))
self.printPage(

’Welcome back’,
self.environ[’SCRIPT_NAME’],
’Visit Again’,
self.environ[’SCRIPT_NAME’]+’?destroy=True’,
’Destroy Session’, ’<p>Every time you visit this page the expiry time increases 5 seconds</p>’+
’</p><p>’.join(data)

)
else:

self.environ[’web.session.store’][’Variable1’] = ’Python Rules!’
self.printPage(

’New Session Started’,
self.environ[’SCRIPT_NAME’],
’Visit Again’, ’’, ’’,
"Set variable1 to ’Python Rules!’"

)
Save changes
self.environ[’web.database.connection’].commit()

application = error.Error(
database.Database(

environment.Environment(
session.Session(

cgi.CGI(
simpleApp(),

),
app = ’testApp’,
expire = 10,
setupEnvironment = 1

),
name = ’testEnv’,
storage = ’database’,

),
adapter = ’snakesql’,
database = ’wsgi-session’,
autoCreate = 1

),
)

You can test this example by running the WSGI server ‘scripts/WSGIServer.py’ and visiting
http://localhost:8000/session

web.wsgi.error – Error Handling

Error handling middleware is designed to catch any exception which happened lower down the execution chain and
handle the exception in an appropriate way. The WSGI server orrunCGI application will handle any exception
left uncaught, usually by displaying an HTML page with a message such as ”Server Error 500” so error handling
middleware is not essential.

The web.wsgi.error module provides one classError which does not alter theenviron dictionary but
does catch any exception and print an HTML display of the traceback information. It can be used like this:

1.15. web.wsgi — Web Server Gateway Interface tools 137

import web.wsgi.base, web.wsgi.error

class Application(web.wsgi.base.BaseApplication):
def start(self):

raise Exception(’Test error is caught and displayed’)

application = web.wsgi.error.Error(
Application(),

)

You can also create your own error handling class by deriving a middleware class from
web.wsgi.error.Error . In this example a text traceback is displayed instead:

import web.wsgi.base, web.wsgi.error

class simpleApp(web.wsgi.base.BaseApplication):
def start(self):

raise Exception(’Test Exception’)

class myError(web.wsgi.error.Error):
def error(self):

"Generate an error report"
return (

’200 Error Handled’,
[(’Content-type’,’text/html’)],
[web.error.info()]

)

application = myError(
simpleApp(),

)

Theerror method should return the valuesstatus , headers , iterable .

You can test this example by running the WSGI server ‘scripts/WSGIServer.py’ and visiting
http://localhost:8000/auth

Note: We do not need the#!/usr/bin/env python line or modifications tosys.path for WSGI appli-
cations since the relevant objects are imported from the files, the files are not executed as scripts.

Errors along the lines of the one shown below may be due to incorrectly formed headers with tuples of the wrong
length and can be hard to track down.

ValueError: unpack list of wrong size
args = (’unpack list of wrong size’,)

web.wsgi.auth – User Permission Handling

Auth handling middleware determines which user is currently signed in and provides aUser object which has
information about that user. Auth sign in functionality is left to the application but is made extremely easy through
the use of an sign in handler class.

Theweb.wsgi.auth module provides one classAuth which adds the following information to theenviron
dictionary based on the parameters specified in the class constructor.

environ[’web.auth.username’] and environ[’REMOTE USER’] The username of the user
who is currently signed in.

138 Chapter 1. Web Modules

environ[’web.auth.user’] A User for the user who is currently signed in.

environ[’web.auth.session’] An AuthSession object as returned byweb.auth.session()
used to manage whether a user is currently signed in or not.

environ[’web.auth.manager’] A session UserManager object as returned by
web.auth.manager() used to manage applications and users.

The example below demonstrates how to check if a user is signed in and if they are not signed in, provide them
with a sign in form and handle the submissions until they are signed in.

import sys; sys.path.append(’../’)
from web.wsgi import *

Sign In Application
class simpleApp(base.BaseApplication):

def start(self):
Create some sample data
if not self.environ[’web.auth.manager’].applicationExists(’app’):

self.environ[’web.auth.manager’].addApplication(’app’)
self.environ[’web.auth.manager’].addUser(

’john’,
’bananas’,
’John’,
’Smith’,
’johnsmith@example.com’,

)
self.environ[’web.auth.manager’].setAccessLevel(’john’, ’app’, 1)

See if anyone is signed in
if self.environ.has_key(’web.auth.user’):

self.output(’Already signed in’)
else:

Try to login
import web.auth.handler.signIn
signInHandler = web.auth.handler.signIn.SignInHandler(

session = self.environ[’web.auth.session’],
manager = self.environ[’web.auth.manager’],
cgi = self.environ[’web.cgi’],

)
error = signInHandler.handle()
if error:

Display the error form
self.output(’<html><body><h1>Please Sign In</h1>%s</body></html>’%error)

else:
We have just signed in
self.output(’Signed in successfully’)

self.environ[’web.database.connection’].commit()

Middleware Setup
application = error.Error(

database.Database(
environment.Environment(

session.Session(
cgi.CGI(

auth.Auth(
simpleApp(),
app=’test’,
setupEnvironment=1,
expire=30,
idle=10,

),
),
app = ’testApp’,

1.15. web.wsgi — Web Server Gateway Interface tools 139

expire = 1000,
setupEnvironment = 1,

),
name = ’testEnv’,
storage = ’database’,

),
adapter = ’snakesql’,
database = ’wsgi-auth’,
autoCreate = 1,

),
)

You can test this example by running the WSGI server ‘scripts/WSGIServer.py’ and visiting
http://localhost:8000/auth

140 Chapter 1. Web Modules

APPENDIX

A

Reporting Bugs

Please email bugs at pythonweb.org

141

142

APPENDIX

B

History and License

B.1 History of the software

Python Web Modules are released under the GNU LGPL

143

144

MODULE INDEX

D
datetime , 12

W
web, 1
web.auth , 2
web.database , 15
web.database.object , 58
web.environment , 89
web.error , 82
web.form , 90
web.form.field.basic , 93
web.form.field.extra , 96
web.form.field.typed , 95
web.image , 100
web.mail , 102
web.session , 104
web.template , 118, 122
web.wsgi , 125
web.xml , 124

145

146

INDEX

Symbols
call () (method), 131
call () (callable method), 132
getitem () (method), 78, 80, 92
getitem () (bool method), 55

function() (method), 53
output (string attribute), 130

A
accessLevel (String attribute), 6
addAction() (method), 92
addApplication() (method), 11
addColumn() (method), 79
addField() (method), 92
addMultiple() (method), 79
addRelated() (method), 79
addSingle() (method), 79
addTable() (method), 78
addUser() (method), 11
app (String attribute), 117
application (dictionary attribute), 132
applicationExists() (method), 11
apps() (method), 11
AuthManager (class in web.auth), 11
AuthSession (class in web.auth), 11

B
BaseApplication (class in web.wsgi), 130
baseCursor (attribute), 50
BaseMiddleware (class in web.wsgi), 132
baseType (attribute), 56

C
Checkbox (class in web.form.field.basic), 94
CheckBoxGroup (class in web.form.field.basic),

95
childTables (list attribute), 55
cleanup() (method), 116
cleanupProbability (Float attribute), 115
close() (method), 50
code() (String method), 88
Column (class in web.database), 55
column()

method, 45, 54
bool method, 55

column (QueryBuilder attribute), 81
columnExists()

method, 80
bool method, 55

columns() (method), 80
columns (list attribute), 55
completeAuthEnvironment() (Bool

method), 10
completeEnvironment() (method), 90
completeSessionEnvironment() (Bool

method), 114
connect() (in module web.database), 17, 49
connection (attribute), 50
context (Integer attribute), 87
Converter (class in web.database), 56
converter (attribute), 56
cookie (Dict attribute), 115
cookieSessionID() (String method), 116
count() (method), 47, 54
create()

method, 80
cursor method, 46, 53
String method, 115

createAuthEnvironment() (method), 10
createEnvironment() (method), 90
createSessionEnvironment() (method),

114
createTables() (method), 78
cursor() (in module web.database), 19, 50
cursor (cursor attribute), 79

D
Database (class in web.database.object), 78, 79
databaseToValue() (method), 56
date

class in datetime, 12
String attribute, 87

datetime
class in datetime, 13
extension module,12
module, 12

day (Integer attribute), 12, 13
debug() (String method), 88
default (attribute), 56
delete()

method, 80, 117

147

cursor method, 44, 53
deleteCookie() (method), 116
deleteCookieString() (method), 116
description() (String method), 94
destroy() (String method), 115
dict() (method), 79, 80, 82, 92
Driver

class in web.auth, 10
class in web.session, 114

driver()
in module web.auth, 10
in module web.environment, 90
in module web.session, 113

drop()
method, 80
cursor method, 47, 53

dropTables() (method), 78

E
email (String attribute), 6
empty() (method), 117
encode() (in module web), 2
environ() (dictionary method), 132
environ (dictionary attribute), 130
EnvironmentDriver (class in

web.environment), 90
error() (String method), 94
error

Error tuple attribute, 87
String attribute, 115

ErrorInformation (class in web.error), 87
errorType (Error attribute), 87
errorValue (String attribute), 87
exc info() (Exception method), 132
execute() (method), 51
executemany() (method), 51
exists() (method), 80, 116
expire (Integer attribute), 115
export() (method), 50

F
fetchall() (method), 51
fetchone() (method), 51
Field (class in web.form.field.basic), 93
field() (method), 92
File (class in web.form.field.basic), 95
firstname (String attribute), 6
Form (class in web.form), 92
form()

method, 80
String method, 81

format (String attribute), 87
frozen()

method, 93
String method, 94

G
genSessionID() (String method), 115

get() (method), 117
getAccessLevel() (method), 12
getAccessLevels() (method), 12
getEmail() (method), 12
getFirstname() (method), 11
getPassword() (method), 11
getSurname() (method), 11

H
handle() (in module web.error), 84
has key()

method, 79
bool method, 55

header() (in module web), 1
headers() (list method), 132
headers (list attribute), 130
Hidden (class in web.form.field.basic), 94
hidden()

method, 93
String method, 94

hour (Integer attribute), 13
html()

method, 93
String method, 94

html2tuple() (in module web.image), 100

I
info (attribute), 50
init() (method), 78
Input (class in web.form.field.basic), 94
insert()

method, 80
cursor method, 41, 52

insertMany() (cursor method), 52
isoformat() (method), 14
isRelated() (method), 81
items() (method), 79

K
key (attribute), 56
keys() (method), 79

L
level (Dict attribute), 6
load() (Bool method), 115

M
mail() (in module web.mail), 102
Manager (class in web.session), 114
manager()

in module web.auth, 11
in module web.session, 114

max() (method), 47, 53, 81
Menu (class in web.form.field.basic), 95
microsecond (Integer attribute), 13
min() (method), 47, 53, 81
minute (Integer attribute), 13

148 Index

month (Integer attribute), 12, 13

N
name() (String method), 94
name

attribute, 55
String attribute, 79
string attribute, 55

now() (datetime method), 13

O
order() (method), 40, 54
ouput() (String method), 87
output() (method), 79, 130, 132

P
parentTables (list attribute), 55
parse() (in module web.template), 118
Password (class in web.form.field.basic), 94
password (String attribute), 6
populate()

method, 92
None method, 94

position (attribute), 56
primaryKey (string attribute), 55
pythonVersion (String attribute), 87

R
RadioGroup (class in web.form.field.basic), 95
relate() (method), 81
remove() (method), 92
removeApplication() (method), 11
removeAuthEnvironment() (method), 10
removeEnvironment() (method), 90
removeSessionEnvironment() (method),

114
removeUser() (method), 11
required (attribute), 56
Reset (class in web.form.field.basic), 94
response() (sequence method), 132
response headers (List attribute), 115
Row(class in web.database.object), 81
row() (method), 80
rowExists() (method), 80
rowid (Integer attribute), 82
runWebServer() (in module web.template), 122

S
second (Integer attribute), 13
seed (String attribute), 115
Select (class in web.form.field.basic), 95
select() (method), 38, 51, 80
sendCookieHeaders() (method), 116
sent headers (List attribute), 115
sessionID (String attribute), 115
sesssion() (in module web.auth), 10
set() (method), 117

setAccessLevel() (method), 12
setCookie() (method), 116
setCookieString() (method), 116
setEmail() (method), 12
setError() (String method), 94
setExpire() (method), 116
setFirstname() (method), 11
setPassword() (method), 11
setSurname() (method), 11
signIn() (method), 11
signOut() (method), 11
sql (attribute), 50
sqlQuotes (string attribute), 56
sqlToValue() (method), 56
start()

method, 130, 132
in module web.auth, 9
in module web.session, 117

status() (string method), 132
status (string attribute), 130
Store (class in web.session), 117
store() (Store Object method), 115
strftime() (method), 14
strip() (in module web.template), 122
Submit (class in web.form.field.basic), 94
surname (String attribute), 6

T
Table (class in web.database), 55
table()

method, 78
in module web.template, 123

table (attribute), 56
tablesExist() (method), 78
templateDict() (method), 93
TextArea (class in web.form.field.basic), 95
time (class in datetime), 12
timetuple() (method), 14
traceback() (String method), 88
transform()

in module web.xml, 124
Iterable method, 133

type
attribute, 55
string attribute, 56

U
unique (attribute), 56
unrelate() (method), 81
update()

method, 81
cursor method, 43, 52

User (class in web.auth), 5
userExists() (method), 11
userInfo() (method), 11
username() (method), 11
username (String attribute), 5
users() (method), 12

Index 149

V
valid()

method, 116
Bool method, 92
True or False method, 94

value
List attribute, 95
String attribute, 94

values() (method), 79
valueToDatabase() (method), 56
valueToSQL() (method), 56

W
web (extension module),1
web.auth

extension module,2
module, 2

web.database (extension module),15
web.database.object (extension module),58
web.environment

extension module,89
module, 89

web.error
extension module,82
module, 82

web.error.error() (in module web.error), 87
web.error.info() (in module web.error), 84
web.form (extension module),90
web.form.field.basic (extension module),

93
web.form.field.extra (extension module),

96
web.form.field.typed (extension module),

95
web.image (extension module),100
web.mail (extension module),102
web.session (extension module),104
web.template (extension module),118, 122
web.wsgi (extension module),125
web.xml (extension module),124
where() (method), 40, 54
wrap() (in module web.template), 122

Y
year (Integer attribute), 12, 13

150 Index

	1 Web Modules
	1.1 web --- Web modules
	1.2 web.auth --- Easy to use authorisation and user management system
	1.2.1 Background Information
	1.2.2 Drivers
	1.2.3 The Environment
	1.2.4 Obtaining Access to the Auth Session Information
	1.2.5 Administering The Auth Environment
	Adding Applications
	Adding Users
	Setting Access Levels

	1.2.6 Checking Who Is Signed In
	1.2.7 Automatically Handling Sign In Attempts
	1.2.8 Using Roles
	1.2.9 Examples
	1.2.10 Function Reference
	The start() Function
	Driver Objects
	AuthSession Objects
	AuthManager Objects

	1.3 datetime --- Compatibility code providing date and time classes for Python 2.2 users
	1.3.1 Module-Level Functionality
	1.3.2 Compatibility with Python 2.3 and above

	1.4 web.database --- SQL database layer
	1.4.1 Background
	1.4.2 Introduction
	Understanding Field Types

	1.4.3 Connecting to a Database
	1.4.4 Cursor Options
	1.4.5 Executing SQL
	1.4.6 Retrieving Results
	1.4.7 Transactions, Rollbacks and Committing Changes
	1.4.8 Special Characters
	In Python
	In SQL
	The Easy Way

	1.4.9 SQL Reference
	The SELECT Statement
	The WHERE Clause
	The INSERT INTO Statement
	The UPDATE Statement
	The DELETE Statement
	ORDER BY
	AND & OR
	NULL Values
	CREATE
	DROP Table
	FOREIGN KEY and Joins

	1.4.10 Cursor Abstraction Methods
	Selecting Data
	Inserting Data
	Updating Data
	Deleting Data
	Creating Tables
	Dropping Tables
	Functions

	1.4.11 Supported Databases
	MySQL
	SQLite
	ODBC

	1.4.12 Example Code
	1.4.13 API Reference
	Module Interface
	Connection Objects
	Cursor Objects
	Table Objects
	Column Objects
	Converter Objects

	1.4.14 Developer's Guide
	Implementing the Classes
	Creating the Dictionary

	1.4.15 Tools Under Development
	Interactive Prompt
	Object-Relational Mapper
	Web Based Admin

	1.4.16 Future Additions

	1.5 web.database.object --- An object relation mapper built on the web.database and web.form modules
	1.5.1 Introduction
	Requirements
	Compared To Other Database Wrappers

	1.5.2 Introductory Example
	Full Code Listing
	Using Alternative Keys
	Available Columns

	1.5.3 One-To-Many Mappings
	Full Code Listing

	1.5.4 Many-To-Many Mappings
	Full Code Listing

	1.5.5 Building Queries
	How It Works
	Supported Operators
	Supported Functions
	Full Code Listing

	1.5.6 Creating Forms/Tables
	Full Code Listing

	1.5.7 Creating Tables by Defining Classes
	1.5.8 Other Useful Features
	1.5.9 Class Reference
	The Database Object
	The Table Object
	The Row Object

	1.5.10 Future

	1.6 web.error --- Enhanced error handling based on the cgitb module
	1.6.1 Basic Usage
	1.6.2 Using The info() Function
	1.6.3 Using The handler() Function
	1.6.4 Using The error() Function
	1.6.5 Creating Custom Handlers
	1.6.6 Example

	1.7 web.environment --- Tools for seting up an environment
	1.7.1 Example
	1.7.2 API Reference

	1.8 web.form --- Construction of persistant forms/wizards for HTML interfaces
	1.8.1 Introduction
	1.8.2 Form Objects
	1.8.3 Creating Custom Forms
	1.8.4 Fields
	web.form.field.basic --- Various fields for use with web.form
	web.form.field.typed --- Typed fields for use with web.form and web.database.object
	web.form.field.extra --- Extra fields for use with web.form

	1.8.5 Basic Fields Example
	1.8.6 Typed Fields Example

	1.9 web.image --- Create and manipulate graphics including JPG, PNG, PDF, PS using PIL
	1.9.1 web.image.graph --- Create graphs

	1.10 web.mail --- Simple function to send email using email
	1.10.1 Example

	1.11 web.session --- Persistent storage of session and automatic cookie handling
	1.11.1 Background Information
	The HTTP Protocol is Stateless
	Session IDs
	Information Storage
	Multiple Applications
	The HTTP Protocol and Cookie Handling

	1.11.2 Session Module Overview
	1.11.3 Drivers
	1.11.4 The Environment
	1.11.5 Obtaining a Session
	1.11.6 Multiple Applications and Stores
	1.11.7 Using Stores
	1.11.8 Using the session.start() function
	1.11.9 Managing Sessions
	Checking Session Existence or Validity
	Destroying Sessions
	Cleaning Up Expired Sessions
	Changing the Expire Time of a Session

	1.11.10 Custom Cookie Handling
	1.11.11 Web Server Gateway Interface Middleware
	1.11.12 Implementing a new Driver
	1.11.13 Example
	1.11.14 API Reference
	Driver Objects
	Manager Objects
	Store Objects
	The start() Function

	1.12 web.template --- For the easy display of data as HTML/XML
	1.12.1 Cheetah Template
	1.12.2 XYAPTU Templating
	1.12.3 Dreamweaver MX

	1.13 web.util --- Useful utility functions that don't fit elsewhere
	1.14 web.xml --- XSLT Transform
	1.15 web.wsgi --- Web Server Gateway Interface tools
	1.15.1 Introduction
	What is a WSGI application?
	What Are Middleware Components?
	Callables, Classes or Functions?
	Running WSGI Applications
	The PythonWeb WSGI Server
	The runCGI() Method

	1.15.2 Writing Applications
	1.15.3 Writing Middleware
	1.15.4 The PythonWeb Middleware Components
	web.wsgi.cgi -- CGI Variable Access
	web.wsgi.database -- Database Access
	web.wsgi.environment -- Environment Information
	web.wsgi.session -- Session Handling
	web.wsgi.error -- Error Handling
	web.wsgi.auth -- User Permission Handling

	A Reporting Bugs
	B History and License
	B.1 History of the software

	Module Index
	Index

